On singular controls of a maximum principle for the problem of the Goursat–Darboux system optimization
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 483-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the terminal optimization problem connected with the Goursat–Darboux control system. The right-hand side of the differential equation is a full nonlinear Caratheodory function. We consider the case in which solutions of the Goursat–Darboux system necessarily belong to a class of functions with $p$-integrable (for some $p>1$) mixed derivatives. In our case a choice of this class is defined by boundary functions. We study singular controls in the sense of the pointwise maximum principle that are controls for which this principle is strong degenerate, i.e., degenerate together with second-order optimality conditions. It is shown that for strong degeneration of the pointwise maximum principle it is sufficient that right-hand side with respect to state derivatives is affine and these derivatives and control are separated additively. Necessary optimality conditions of the singular controls are given for this case. These conditions generalize similar necessary optimality conditions which were obtained for more smooth right-hand sides in the case of solutions with bounded mixed derivatives.
Keywords: nonlinear Goursat–Darboux system, solutions having summable mixed derivatives, terminal optimization problem, maximum principle, singular controls.
@article{VUU_2015_25_4_a4,
     author = {I. V. Lisachenko and V. I. Sumin},
     title = {On singular controls of a~maximum principle for the problem of the {Goursat{\textendash}Darboux} system optimization},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {483--491},
     year = {2015},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a4/}
}
TY  - JOUR
AU  - I. V. Lisachenko
AU  - V. I. Sumin
TI  - On singular controls of a maximum principle for the problem of the Goursat–Darboux system optimization
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 483
EP  - 491
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a4/
LA  - ru
ID  - VUU_2015_25_4_a4
ER  - 
%0 Journal Article
%A I. V. Lisachenko
%A V. I. Sumin
%T On singular controls of a maximum principle for the problem of the Goursat–Darboux system optimization
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 483-491
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a4/
%G ru
%F VUU_2015_25_4_a4
I. V. Lisachenko; V. I. Sumin. On singular controls of a maximum principle for the problem of the Goursat–Darboux system optimization. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a4/

[1] Vasil'ev O. V., Srochko V. A., Terletskii V. A., Optimization methods and their applications. Part 2. Optimal Control, Nauka, Novosibirsk, 1990, 151 pp. | MR | Zbl

[2] Sumin V. I., “Strong degeneration of singular controls in distributed optimization problems”, Sov. Math., Dokl., 44:2 (1992), 453–458 | MR | Zbl

[3] Sumin V. I., “On singular controls in the sence of the pointwise maximum principle in distributed optimization problems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 70–80 (in Russian)

[4] Mansimov K. B., Mardanov M. J., Qualitative theory of optimal control connected with Goursat–Darboux system, Elm, Baku, 2010, 360 pp.

[5] Gabasov R., Kirillova F. M., Mansimov K. B., Necessary second-order optimality conditions for systems with distributed parameters, Prepr. no. 31, Akad. Nauk Beloruss. SSR, Inst. Mat., Minsk, 1982, 32 pp. (in Russian)

[6] Mansimov K. B., “Singular controls in control problems of distributed parameter systems”, J. Math. Sci., 148:3 (2008), 331–381, New York | DOI | MR | Zbl

[7] Sumin V. I., Optimization of control Volterra systems, Cand. Sci. (Phys.-Math.) Dissertation, Gor'kii, 1975, 158 pp.

[8] Lisachenko I. V., Sumin V. I., “Nonlinear Goursat–Darboux control problem: conditions for the preservation of global solvability”, Differential Equations, 47:6 (2011), 858–870 | MR | Zbl

[9] Lisachenko I. V., Sumin V. I., “The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 52–67 (in Russian) | Zbl

[10] Lisachenko I. V., Sumin V. I., “On singular controls in the sense of the maximum principle for terminal optimization problem connected with Goursat–Darboux system”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 1(39), 80–81 (in Russian) | Zbl

[11] Lisachenko I. V., Sumin V. I., “About singular controls of maximum principle for terminal optimization problem connected with Goursat–Darboux system”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 20:5 (2015), 1264–1274 (in Russian)

[12] Ioffe A. D., Tikhomirov V. M., Theory of extremal problems, Nauka, Moscow, 1974, 480 pp. | MR