@article{VUU_2015_25_4_a2,
author = {A. A. Zimovets and A. R. Matviichuk},
title = {A parallel algorithm for constructing approximate attainable sets of nonlinear control systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {459--472},
year = {2015},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a2/}
}
TY - JOUR AU - A. A. Zimovets AU - A. R. Matviichuk TI - A parallel algorithm for constructing approximate attainable sets of nonlinear control systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 459 EP - 472 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a2/ LA - ru ID - VUU_2015_25_4_a2 ER -
%0 Journal Article %A A. A. Zimovets %A A. R. Matviichuk %T A parallel algorithm for constructing approximate attainable sets of nonlinear control systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 459-472 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a2/ %G ru %F VUU_2015_25_4_a2
A. A. Zimovets; A. R. Matviichuk. A parallel algorithm for constructing approximate attainable sets of nonlinear control systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 459-472. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a2/
[1] Krasovskii N. N., Theory of motion control, Nauka, Moscow, 1968, 476 pp. | MR
[2] Nikol'skii M. S., “A method of approximating an attainable set for a differential inclusion”, USSR Computational Mathematics and Mathematical Physics, 28:4 (1988), 192–194 | DOI | MR | Zbl
[3] Komarov V. A., Pevchikh K. E., “A method of approximating attainability sets for differential inclusions with a specified accuracy”, USSR Computational Mathematics and Mathematical Physics, 31:1 (1991), 109–112 | MR | Zbl
[4] Guseinov Kh. G., Moiseyev A. N., Ushakov V. N., “The approximation of reachable domains of control systems”, Journal of Applied Mathematics and Mechanics, 62:2 (1998), 169–175 | DOI | MR
[5] Ushakov V. N., Matviichuk A. R., Ushakov A. V., “Approximations of attainability sets and of integral funnels of differential inclusions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 4, 23–39 (in Russian) | Zbl
[6] Pakhotinskikh V. Yu., Constructing solutions for control problems on a finite time interval, Cand. Sci. (Phys.-Math.) Dissertation, Chelyabinsk, 2005, 160 pp. (in Russian)
[7] Zimovets A. A., “A boundary layer method for the construction of approximate attainability sets of control systems”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Mekh. Fiz., 5:1 (2013), 18–25 (in Russian)