Optical measurement of a fluid velocity field around a falling plate
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 554-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the experimental verification of the Andersen–Pesavento–Wang model describing the falling of a heavy plate through a resisting medium. As a main research method the authors have used video filming of a falling plate with PIV measurement of the velocity of surrounding fluid flows. The trajectories of plates and streamlines were determined and oscillation frequencies were estimated using experimental results. A number of experiments for plates of various densities and sizes were performed. The trajectories of plates made of plastic are qualitatively similar to the trajectories predicted by the Andersen–Pesavento–Wang model. However, measured and computed frequencies of oscillations differ significantly. For a plate made of high carbon steel the results of experiments are quantitatively and qualitatively in disagreement with computational results.
Keywords: PIV – Particle Image Velocimetry, Maxwell problem, model of Andersen–Pesavento–Wang.
@article{VUU_2015_25_4_a11,
     author = {E. V. Vetchanin and A. I. Klenov},
     title = {Optical measurement of a~fluid velocity field around a~falling plate},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {554--567},
     year = {2015},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a11/}
}
TY  - JOUR
AU  - E. V. Vetchanin
AU  - A. I. Klenov
TI  - Optical measurement of a fluid velocity field around a falling plate
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 554
EP  - 567
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a11/
LA  - ru
ID  - VUU_2015_25_4_a11
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%A A. I. Klenov
%T Optical measurement of a fluid velocity field around a falling plate
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 554-567
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a11/
%G ru
%F VUU_2015_25_4_a11
E. V. Vetchanin; A. I. Klenov. Optical measurement of a fluid velocity field around a falling plate. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 554-567. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a11/

[1] Zhukovskii N. E., “On soaring of birds”, The Complete Works, v. 5, Vortices, Aerofoil Theory, Aviation, Editorial Office of Aviation Literature, Moscow–Leningrad, 1937, 7–35 (in Russian)

[2] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Mosc. Univ. Mech. Bull., 45:1 (1990), 30–36 | MR | Zbl

[3] Kuznetsov S. P., “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelineinaya Dinamika, 11:1 (2015), 3–49 (in Russian) | Zbl

[4] Andersen A., Pesavento U., Wang Z. J., “Analysis of transitions between fluttering, tumbling and steady descent of falling cards”, J. Fluid Mech., 541 (2005), 91–104 | DOI | MR | Zbl

[5] Andersen A., Pesavento U., Wang Z. J., “Unsteady aerodynamics of fluttering and tumbling plates”, J. Fluid Mech., 541 (2005), 65–90 | DOI | MR | Zbl

[6] Belmonte A., Eisenberg H., Moses E., “From flutter to tumble: inertial drag and froude similarity in falling paper”, Phys. Rev. Lett., 81:2 (1998), 345–348 | DOI

[7] Bosbach J., Kühn M., Wagner C., Raffel M., Resagk C., du Puits R., Thess A., “Large scale particle image velocimetry of natural and mixed convection”, 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2006 http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2006/downloads/papers/03_1.pdf

[8] http://www.lavision.de/en/products/flowmaster/index.php

[9] Hærvig J., Jensen A. L., Sørensen H., Pedersen M. C., Extending the existing modelling framework for non-spherical particles to include flat plates in free fall – an experimental and numerical investigation of the unsteady aerodynamics of flat plates, Master's thesis, Aalborg University, 2014, 154 pp. http://vbn.aau.dk/en/projects/extending....html

[10] Jin C., Xu K., “Numerical study of the unsteady aerodynamics of freely falling plates”, Commun. Comput. Phys., 3:4 (2008), 834–851 | MR

[11] Kolomenskiy D., Schneider K., “Numerical simulations of falling leaves using a pseudo-spectral method with volume penalization”, Theor. Comput. Fluid Dyn., 24 (2010), 169–173 | DOI | Zbl

[12] Mahadevan L., Pyu W. S., Aravinthan D. T. S., “Tumbling cards”, Phys. Fluids, 11:1 (1999), 1–3 | DOI | MR | Zbl

[13] Maxwell J. K., “On a particular case of a descent of a heavy body in a resisting medium”, Camb. and Dubl. Math. Journ., 9 (1854), 145–148

[14] Raffel M., Willert C. E., Kompenhans J., Particle image velocimetry: a practical guide, Springer, Berlin, 2013, 460 pp.

[15] Soria J., “An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique”, Experimental Thermal and Fluid Science, 12:2 (1996), 221–233 | DOI

[16] Tanabe Y., Kaneko K., “Behavior of a falling paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375 | DOI | MR

[17] Willmarth W. W., Hawk N. E., Harvey R. L., “Steady and unsteady motions and wakes of freely falling disks”, Phys. Fluids, 7 (1964), 197–208 | DOI | Zbl

[18] Zhong H., Chen S., Lee C., “Experimental study of freely falling thin disks: Transition from planar zigzag to spiral”, Phys. Fluids, 23 (2011), 011702, 4 pp. | DOI