Search for the optimal initial distribution of players' location in a patrolling game
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 453-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A patrolling game with two players, a patroller and an attacker, is considered in the paper. The aim of the former is to protect an object from intruders and catch the attacker. The aim of the latter is to cause damage to the protected object without being caught. Cellular base stations are viewed as protected objects. A game-theoretic model is constructed to find an initial distribution of players on base stations. When the transition matrix of players among the stations is known, an optimal strategy of players and the value of the game are calculated. An inverse problem of searching for optimal transition matrices with known initial distribution of players is studied. The Nash equilibrium with the attacker making two attacks is found for the considered problem.
Keywords: search game, patrolling, attacking, equilibrium.
@article{VUU_2015_25_4_a1,
     author = {V. V. Gusev},
     title = {Search for the optimal initial distribution of players' location in a~patrolling game},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {453--458},
     year = {2015},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a1/}
}
TY  - JOUR
AU  - V. V. Gusev
TI  - Search for the optimal initial distribution of players' location in a patrolling game
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 453
EP  - 458
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a1/
LA  - ru
ID  - VUU_2015_25_4_a1
ER  - 
%0 Journal Article
%A V. V. Gusev
%T Search for the optimal initial distribution of players' location in a patrolling game
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 453-458
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a1/
%G ru
%F VUU_2015_25_4_a1
V. V. Gusev. Search for the optimal initial distribution of players' location in a patrolling game. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 453-458. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a1/

[1] Benkoski S. J., Monticino M. G., Weisinger J. R., “A survey of the search theory literature”, Naval Research Logistics, 18 (1991), 469–494 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Chew M. C., “Optimal stopping in a discrete search problem”, Operations Research, 21 (1973), 741–747 | DOI | MR | Zbl

[3] Gittins J. S., “An application of control theory to a game of hide and seek”, International Journal of Control, 30 (1979), 981–987 | DOI | MR | Zbl

[4] Iida K., “Optimal search and stop in continuous search process”, Journal of the Operations Research Society of Japan, 27 (1984), 1–30 | MR | Zbl

[5] Joshi S. S., Phoha V. V., “Investigating hidden Markov models capabilities in anomaly detection”, Proceedings of 43rd Annual Southeast Regional Conference, Kennesaw, GA, March 2005, 98–103 | DOI

[6] Zhao F., Jin H., “Automated approach to intrusion detection in vm-based dynamic execution environment”, Computing and Informatics, 31 (2012), 271–297

[7] Mazalov V. V., Mathematical theory of games and applications, Lan', St. Petersburg, 2010, 448 pp.