The graph of acyclic digraphs
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 441-452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper introduces the concept of a binary reflexive relation of adjacency on the set of all binary relations of a set $X$ (in terms of characteristic functions) and determines an algebraic system consisting of all binary relations of the set and of all unordered pairs of adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). It is proved that the diameter of a graph of binary relations is 2. It is shown that if $\sigma$ and $\tau$ are adjacent relations, then $\sigma$ is an acyclic relation (finite acyclic digraph) if and only if $\tau$ is an acyclic relation. An explicit formula for the number of connected components of a graph of acyclic relations is received.
Keywords: binary relation, acyclic digraph.
@article{VUU_2015_25_4_a0,
     author = {Kh. Sh. Al' Dzhabri and V. I. Rodionov},
     title = {The graph of acyclic digraphs},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {441--452},
     year = {2015},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/}
}
TY  - JOUR
AU  - Kh. Sh. Al' Dzhabri
AU  - V. I. Rodionov
TI  - The graph of acyclic digraphs
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 441
EP  - 452
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/
LA  - ru
ID  - VUU_2015_25_4_a0
ER  - 
%0 Journal Article
%A Kh. Sh. Al' Dzhabri
%A V. I. Rodionov
%T The graph of acyclic digraphs
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 441-452
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/
%G ru
%F VUU_2015_25_4_a0
Kh. Sh. Al' Dzhabri; V. I. Rodionov. The graph of acyclic digraphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 441-452. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/

[1] Al' Dzhabri Kh. Sh., Rodionov V. I., “The graph of partial orders”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 3–12 (in Russian) | Zbl

[2] Al' Dzhabri Kh. Sh., “The graph of reflexive-transitive relations and the graph of finite topologies”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 3–11 (in Russian)

[3] Liskovets V. A., “On the number of maximal vertices of a random acyclic digraph”, Theory Probab. Appl., 20:2 (1976), 401–409 | DOI | MR | Zbl

[4] Rodionov V. I., “On the number of labeled acyclic digraphs”, Discrete Mathematics, 105 (1992), 319–321 | DOI | MR | Zbl