The graph of acyclic digraphs
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 441-452
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper introduces the concept of a binary reflexive relation of adjacency on the set of all binary relations of a set $X$ (in terms of characteristic functions) and determines an algebraic system consisting of all binary relations of the set and of all unordered pairs of adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). It is proved that the diameter of a graph of binary relations is 2. It is shown that if $\sigma$ and $\tau$ are adjacent relations, then $\sigma$ is an acyclic relation (finite acyclic digraph) if and only if $\tau$ is an acyclic relation. An explicit formula for the number of connected components of a graph of acyclic relations is received.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
binary relation, acyclic digraph.
                    
                  
                
                
                @article{VUU_2015_25_4_a0,
     author = {Kh. Sh. Al' Dzhabri and V. I. Rodionov},
     title = {The graph of acyclic digraphs},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {441--452},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/}
}
                      
                      
                    TY - JOUR AU - Kh. Sh. Al' Dzhabri AU - V. I. Rodionov TI - The graph of acyclic digraphs JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 441 EP - 452 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/ LA - ru ID - VUU_2015_25_4_a0 ER -
Kh. Sh. Al' Dzhabri; V. I. Rodionov. The graph of acyclic digraphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 441-452. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/
