The graph of acyclic digraphs
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 441-452
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper introduces the concept of a binary reflexive relation of adjacency on the set of all binary relations of a set $X$ (in terms of characteristic functions) and determines an algebraic system consisting of all binary relations of the set and of all unordered pairs of adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). It is proved that the diameter of a graph of binary relations is 2. It is shown that if $\sigma$ and $\tau$ are adjacent relations, then $\sigma$ is an acyclic relation (finite acyclic digraph) if and only if $\tau$ is an acyclic relation. An explicit formula for the number of connected components of a graph of acyclic relations is received.
Keywords:
binary relation, acyclic digraph.
@article{VUU_2015_25_4_a0,
author = {Kh. Sh. Al' Dzhabri and V. I. Rodionov},
title = {The graph of acyclic digraphs},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {441--452},
year = {2015},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/}
}
TY - JOUR AU - Kh. Sh. Al' Dzhabri AU - V. I. Rodionov TI - The graph of acyclic digraphs JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 441 EP - 452 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/ LA - ru ID - VUU_2015_25_4_a0 ER -
Kh. Sh. Al' Dzhabri; V. I. Rodionov. The graph of acyclic digraphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 441-452. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a0/
[1] Al' Dzhabri Kh. Sh., Rodionov V. I., “The graph of partial orders”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 3–12 (in Russian) | Zbl
[2] Al' Dzhabri Kh. Sh., “The graph of reflexive-transitive relations and the graph of finite topologies”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 3–11 (in Russian)
[3] Liskovets V. A., “On the number of maximal vertices of a random acyclic digraph”, Theory Probab. Appl., 20:2 (1976), 401–409 | DOI | MR | Zbl
[4] Rodionov V. I., “On the number of labeled acyclic digraphs”, Discrete Mathematics, 105 (1992), 319–321 | DOI | MR | Zbl