Kinematic control of vehicle motion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 254-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The derivation of laws of kinematic control of motion of three-wheeled and four-wheeled carriages with hard wheels along an arbitrary smooth trajectory is considered in this paper. The independent angles of rotation of driving wheels are chosen as parameters of control for a three-wheeled carriage. The angle of rotation of a front wheel in the two-wheeled car models defined by the angles of rotation of front wheels on the basis of Ackermann steering is chosen as a control parameter for a four-wheeled carriage. It is established that the product of the velocity of any point of the vehicle body and the oriented curvature of its trajectory is a kinematic invariant determining the angular velocity of a vehicle. The paper presents the results of numerical modeling and animation of three-wheeled and four-wheeled carriages motion demonstrating the adequacy of the proposed model of kinematic control. The use of the proposed model can be a significant refinement of algorithms of parallel parking as well as the solution of navigation problems of management of motor vehicles using GPS and GLONASS navigation systems and problems of control of mobile robots with the help of tracking sensors. Also the proposed model can be useful for designing the motor roads, road interchanges, single-level and multilevel Parking lots, gasoline stations, on-the-go fast food stations and for the creation of car-simulators.
Keywords: kinematic control, three-wheeled carriage, trajectory of vehicle motion, steering angle, Ackerman steering principle, maneuvering.
Mots-clés : mobile robot, navigation
@article{VUU_2015_25_2_a9,
     author = {S. A. Berestova and N. E. Misyura and E. A. Mityushov},
     title = {Kinematic control of vehicle motion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {254--266},
     year = {2015},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a9/}
}
TY  - JOUR
AU  - S. A. Berestova
AU  - N. E. Misyura
AU  - E. A. Mityushov
TI  - Kinematic control of vehicle motion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 254
EP  - 266
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a9/
LA  - ru
ID  - VUU_2015_25_2_a9
ER  - 
%0 Journal Article
%A S. A. Berestova
%A N. E. Misyura
%A E. A. Mityushov
%T Kinematic control of vehicle motion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 254-266
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a9/
%G ru
%F VUU_2015_25_2_a9
S. A. Berestova; N. E. Misyura; E. A. Mityushov. Kinematic control of vehicle motion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 254-266. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a9/

[1] Weinstein A. J., Moore K. L., “Pose estimation of Ackerman steering vehicles for outdoors autonomous navigation”, Proceedings of 2010 IEEE International Conference on Industrial Automation (Valparaiso, Chile, March, 2010), 541–546

[2] Aguia A. P., Hespanha J. P., “Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty”, IEEE Trans. Autom. Control, 52:8 (2007), 1362–1379 | MR

[3] Wang D., Qi F., “Trajectory planning for a four-wheel-steering vehicle”, Proceedings of the 2001 IEEE International Conference on Robotics and Automation (Seoul, Korea, May, 2001), 3320–3325

[4] Longoria R. G., Steering and turning vehicles, , 2012 http://www.yumpu.com/en/document/view/4254403/04-steering-and-turning-vehicles-department-of-mechanical

[5] Gusev S. V., Makarov I. A., Trajectory tracking control for maneuverable nonholonomic systems, 2005, arXiv: math/0507567v1 [math.OC]

[6] Rusu R. B., Borodi M., On computing robust controllers for mobile robot trajectory calculus: Lyapunov, Technical report. “Unpublished Papers” Series, , Technical University of Cluj-Napoca, 2005 http://files.rbrusu.com/publications/Rusu05RobotuxLyapunov.pdf

[7] Nagy B., Kelly A., “Trajectory generation for car-like robots using cubic curvature polynomials”, Proceedings of 3rd International Conference on Field and Service Robotics (Helsinki, Finland, 2001), 6 pp. http://www.frc.ri.cmu.edu/ãlonzo/pubs/papers/fsr2001.pdf

[8] She J. H., Xin X., Ohyama Y., Wu M., Kobayashi H., “Vehicle steering control based on estimation of equivalent input disturbance”, Proceedings of the 16th IFAC World Congress, Part 1 (Prague, 2005), v. 16, 1902–1902

[9] Ackermann J., Bunte T., “Automatic car steering control bridges over the driver reaction time”, Kybernetika, 33 (1997), 61–74 | MR | Zbl

[10] Borisov A. V., Lutsenko S. G., Mamaev I. S., “Dynamics of a wheeled carriage on a plane”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 4, 39–48 (in Russian)

[11] Evgrafov V. V., Pavlovsky V. V., Pavlovsky V. E., “Dynamics, control, and simulation of robots with differential drive”, Journal of Computer and Systems Sciences International, 46:5 (2007), 836–841 | MR | Zbl

[12] Andrianova O. G., Korol'kova M. A., Kochetkov S. A., Krasnova S. A., “Kinematic control of the mobile robot motion on range while avoiding obstacles”, Proceedings of the conference “Control in Technical Systems” (Saint Petersburg, 2010), 356–359 (in Russian)

[13] Kochetkov S. A., Utkin V. A., “A trajectory stabilization algorithm for mobile robot”, The Proceedings of 11-th International Workshop on Variable Structure Systems (Mexico, 2010), 121–127

[14] Abdalla T. Y., Hamzah M. I., “Trajectory tracking control for mobile robot using wavelet network”, International Journal of Computer Applications, 74:3 (2013), 32–37 | MR

[15] Liu Y., Zhu J. J., Williams R. L., Wu J., “Omni-directional mobile robot controller based on trajectory linearization”, Robotics and Autonomous Systems, 56:5 (2008), 461–479

[16] Eckermann E., Die Achsschenkellenkung und andere Fahrzeug-Lenksysteme, http://www.be-tech.bplaced.net/inhalt/02tew/techwerk/lenkung/sachinformation/lenkungssysteme.pdf

[17] Ackermann R., Improvements on axletrees applicable to four-wheeled carriages, GB-Patent 4212.27.01.1818

[18] “Ueber die Lankenspergersche und Ackermannsche bewegliche Patent-Achsen”, Dinglers Polytechnisches Journal, 1:XXVII (1820), 296–311 http://dingler.culture.hu-berlin.de/journal/page/pj001?p=312

[19] Tolubko V. B., Vasil'ev B. G., Berezan A. M., “Decision of problem of manoeuvrability by an increase degrees of mobile of machines with the non-holonomic copulas of the wheeled type”, Mekhanika ta mashinobuduvannya, 2009, no. 2, 96–102 (in Russian) | MR

[20] Pozin B. M., Troyanovskaya I. P., “About application of the principle of d'Alembert to the compilation of equations of curvilinear motion of transport vehicles”, Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya Mashinostroenie, 11(66):8 (2006), 37–39 (in Russian)

[21] Mityushov E. A., Misyura F. D., Calculations of the shape trajectories of vehicles and the Ackermann principle of steering, Preprint, http://www.intellectualarchive.com/?link=item&id=1060

[22] Huston D. C. (Pittsburgh, 2010) http://www.allacademic.com/meta/p436841_index.html

[23] Gupta A., Divekar R., “Autonomous Parallel Parking Methodology for Ackerman Configured Vehicles”, ACEEE International Journal on Control System and Instrumentation, 2:2 (2011), 34–39

[24] Blackburn S. R., The geometry of perfect parking, http://personal.rhul.ac.uk/uhah/058/perfect_parking.pdf

[25] Hoffman J., “Perfect Parallel Parking”, New York Times, 2010 http://nyti.ms/hiAhrP

[26] Poddubny V. I., Penyushkin A. S., “Motion control of mobile wheeled vehicles using the satellite navigation systems”, Polzunovsky Vestnik, 1:1 (2012), 239–242 (in Russian)