The trajectories of the particles of a viscous fluid under wave motion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 248-253
Cet article a éte moissonné depuis la source Math-Net.Ru
The motion of the particles of a viscous incompressible fluid caused by the proliferation of free surface waves of small amplitude is considered. The equations of motion of fluid particles in the presence of a traveling or a standing wave on the surface of an infinitely deep layer are obtained. At the propagation of a traveling wave the trajectories are spirals the centers of which correspond to a state of rest. The effect of viscosity is manifested as a decrease in the amplitude of oscillations over time, as well as by the fact that the trajectories of particles near the free surface and at burial are of different form. In the case of a standing wave the motion of each particle goes at intervals the length of which decreases with time. The direction of motion changes from the vertical at the antinodes to the horizontal at the nodes.
Keywords:
viscosity, wave motion, particle trajectories.
@article{VUU_2015_25_2_a8,
author = {K. Yu. Basinskii},
title = {The trajectories of the particles of a viscous fluid under wave motion},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {248--253},
year = {2015},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a8/}
}
TY - JOUR AU - K. Yu. Basinskii TI - The trajectories of the particles of a viscous fluid under wave motion JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 248 EP - 253 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a8/ LA - ru ID - VUU_2015_25_2_a8 ER -
K. Yu. Basinskii. The trajectories of the particles of a viscous fluid under wave motion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 248-253. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a8/
[1] Lamb G., Hydrodynamics, Gostekhizdat, L., 1947, 928 pp.
[2] Sretenskii L. N., Theory of wave motions of fluid, Nauka, M., 1977, 816 pp.
[3] Aleshkov Yu. Z., The theory of waves on the surface of a heavy liquid, Leningrad State University, L., 1981, 196 pp.
[4] Barinov V. A., Taktarov N. G., Mathematical modeling of MHD surface waves, Mordovia State University, Saransk, 1991, 96 pp.
[5] Levich V. G., Physico-chemical hydrodynamics, Fizmatgiz, M., 1959, 700 pp.
[6] Barinov V. A., “Distribution of waves on free surface of viscous liquid”, Vestn. St-Peterbg. Univ., Ser. 10, Prikl. Mat. Inf. Prots. Upr., 2010, no. 2, 18–31 (in Russian) | MR