@article{VUU_2015_25_2_a7,
author = {A. Sh. Shukurov},
title = {About one type of sequences that are not a {Schauder} basis in {Hilbert} spaces},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {244--247},
year = {2015},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a7/}
}
TY - JOUR AU - A. Sh. Shukurov TI - About one type of sequences that are not a Schauder basis in Hilbert spaces JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 244 EP - 247 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a7/ LA - en ID - VUU_2015_25_2_a7 ER -
%0 Journal Article %A A. Sh. Shukurov %T About one type of sequences that are not a Schauder basis in Hilbert spaces %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 244-247 %V 25 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a7/ %G en %F VUU_2015_25_2_a7
A. Sh. Shukurov. About one type of sequences that are not a Schauder basis in Hilbert spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 244-247. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a7/
[1] Lyusternik L. A., Sobolev V. I., Elements of functional analysis, Nauka, M., 1965 | MR | Zbl
[2] Young R. M., An introduction to nonharmonic Fourier series, Academic Press, New York, 1980 | MR | Zbl
[3] Mil'man V. D., “Geometric theory of Banach spaces. Part I: The theory of basis and minimal systems”, Russian Mathematical Surveys, 25:3 (1970), 111–170 | MR | Zbl
[4] Khmyleva T. E., Bukhtina I. P., “On some sequence of Hilbert space elements, which is not basis”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2007, no. 1, 58–62 (in Russian)
[5] Khmyleva T. E., Ivanova O. G., “On some systems of a Hilbert space which are not bases”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 3(11), 53–60 (in Russian)
[6] Sadybekov M. A., Sarsenbi A. M., “On a necessary condition for a system of normalized elements to be a basis in a Hilbert space”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13), 44–46 (in Russian) | MR
[7] Dunford N., Schwartz J., Linear operators. General theory, Izd. Inostr. Lit., M., 1962, 895 pp. | MR