On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 230-243
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n,m,\ell,s\in\mathbb{N}$
be given numbers,
$\Pi\subset\mathbb{R}^n$
be a measurable bounded set,
$\mathcal{X}, \mathcal{Z}, \mathcal{U}$
be Banach ideal spaces of functions measurable on the set $\Pi$,
$\mathcal{D}\subset\mathcal{U}^{s}$
be a convex set,
$\mathcal{A}$
be some class of linear bounded operators
$A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$.
We study the controlled Hammerstein type
functional operator equation as follows
\begin{equation}
x(t)=\theta(t)+
A\Bigl[
f(.,x(.),u(.))
\Bigr](t),
\quad t\in \Pi ,
\quad x\in\mathcal{X}^{\ell},
\tag{1}
\label{eq1}
\end{equation}
where
$\{ u,\theta,A\}\in
\mathcal{D}\times
\mathcal{X}^{\ell}\times
\mathcal{A}$
is the set of controlled parameters;
$f(t,x,v):
\Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$
is a given function measurable with respect to
$t\in\Pi$,
continuous with respect to
$\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$
and satisfying to certain natural hypotheses.
Eq. \eqref{eq1} is a convenient form of representation
of the broad class of controlled distributed systems.
For the equation under study we prove a theorem
concerning sufficient conditions of global solvability
for all
$u\in\mathcal{D}$,
$A\in\mathcal{A}$
and
$\theta$ from a pointwise bounded set.
For the original equation we define
some majorant and minorant inequalities
obtaining them from Eq. \eqref{eq1} with the help of
upper and lower estimates of the right-hand side.
The theorem is proved providing global solvability
of the majorant and minorant inequalities.
As an application of obtained general results
we prove a theorem concerning the total
(with respect to the whole set of admissible controls)
global solvability of the mixed
boundary value problem for a system of hyperbolic equations
of the first order with controlled higher coefficients.
Keywords:
totally global solvability, functional operator equation of the Hammerstein type, pointwise estimate of solutions, system of hyperbolic equations of the first order with controlled higher coefficients.
@article{VUU_2015_25_2_a6,
author = {A. V. Chernov},
title = {On the totally global solvability of a controlled {Hammerstein} type equation with a varied linear operator},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {230--243},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/}
}
TY - JOUR AU - A. V. Chernov TI - On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 230 EP - 243 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/ LA - ru ID - VUU_2015_25_2_a6 ER -
%0 Journal Article %A A. V. Chernov %T On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 230-243 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/ %G ru %F VUU_2015_25_2_a6
A. V. Chernov. On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 230-243. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/