On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 230-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $n,m,\ell,s\in\mathbb{N}$ be given numbers, $\Pi\subset\mathbb{R}^n$ be a measurable bounded set, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ be Banach ideal spaces of functions measurable on the set $\Pi$, $\mathcal{D}\subset\mathcal{U}^{s}$ be a convex set, $\mathcal{A}$ be some class of linear bounded operators $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. We study the controlled Hammerstein type functional operator equation as follows \begin{equation} x(t)=\theta(t)+ A\Bigl[ f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \tag{1} \label{eq1} \end{equation} where $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ is the set of controlled parameters; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ is a given function measurable with respect to $t\in\Pi$, continuous with respect to $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ and satisfying to certain natural hypotheses. Eq. \eqref{eq1} is a convenient form of representation of the broad class of controlled distributed systems. For the equation under study we prove a theorem concerning sufficient conditions of global solvability for all $u\in\mathcal{D}$, $A\in\mathcal{A}$ and $\theta$ from a pointwise bounded set. For the original equation we define some majorant and minorant inequalities obtaining them from Eq. \eqref{eq1} with the help of upper and lower estimates of the right-hand side. The theorem is proved providing global solvability of the majorant and minorant inequalities. As an application of obtained general results we prove a theorem concerning the total (with respect to the whole set of admissible controls) global solvability of the mixed boundary value problem for a system of hyperbolic equations of the first order with controlled higher coefficients.
Keywords: totally global solvability, functional operator equation of the Hammerstein type, pointwise estimate of solutions, system of hyperbolic equations of the first order with controlled higher coefficients.
@article{VUU_2015_25_2_a6,
     author = {A. V. Chernov},
     title = {On the totally global solvability of a controlled {Hammerstein} type equation with a varied linear operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {230--243},
     year = {2015},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 230
EP  - 243
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/
LA  - ru
ID  - VUU_2015_25_2_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 230-243
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/
%G ru
%F VUU_2015_25_2_a6
A. V. Chernov. On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 230-243. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/

[1] Kalantarov V. K., Ladyzhenskaya O. A., “On the appearance of collapses for quasilinear equations of the parabolic and hyperbolic types”, Zap. Nauch. Sem. LOMI, 69 (1977), 77–102 (in Russian) | MR | Zbl

[2] Lions J.-L., Control of singular distributed systems, Nauka, M., 1987, 368 pp. | MR

[3] Sumin V. I., “The features of gradient methods for distributed optimal control problems”, USSR Comput. Math. Math. Phys., 30:1 (1990), 1–15 | MR | Zbl

[4] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, v. I, Volterra equations and controlled initial boundary value problems, Nizhni Novgorod State University, Nizhni Novgorod, 1992, 110 pp.

[5] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Nonlinear functional analysis and its applications to partial differential equations, Nauchnyi mir, M., 2008, 400 pp.

[6] Filippov A. F., Differential equations with discontinuous right-hand side, Nauka, M., 1985, 224 pp. | MR

[7] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Nauka, M., 1979, 432 pp. | MR

[8] Sumin V. I., “Stability problem for the existence of global solutions to boundary value control problems and Volterra functional equations”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, Mat., 2003, no. 1, 91–107 (in Russian) | Zbl

[9] Sumin V. I., Optimization of controlled generalized Volterra systems, Cand. Sci. (Phys.-Math.) Dissertation, Gorkii, 1975, 158 pp. (in Russian)

[10] Morozov S. F., Sumin V. I., “Optimization of nonlinear transport processes”, Sov. Math., Dokl., 20 (1979), 802–806 | MR | Zbl

[11] Morozov S. F., Sumin V. I., “Optimization of the non-linear systems of transport theory”, USSR Comput. Math. Math. Phys., 19:1 (1979), 101–114 | MR | Zbl

[12] Sumin V. I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, Sov. Math., Dokl., 39:2 (1989), 374–378 | MR | Zbl

[13] Sumin V. I., “Sufficient conditions for stable existence of solutions to global problems in control theory”, Differ. Equations, 26:12 (1990), 1579–1590 | MR | Zbl

[14] Sumin V. I., “Controlled functional Volterra equations in Lebesgue spaces”, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo. Mat. Model. Optim. Upr. (in Russian)

[15] Sumin V. I., Functional Volterra equations in the mathematical theory of optimal control of distributed systems, Dr. Sci. (Phys.-Math.) Dissertation, Nizhni Novgorod, 1998, 346 pp. (in Russian)

[16] Sumin V. I., Chernov A. V., “Conditions for existence stability of global solutions to controlled Cauchy problem for a hyperbolic equation”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo. Mat. Model. Optim. Upr., 1997, 94–103 (in Russian)

[17] Sumin V. I., Chernov A. V., Volterra operator equations in Banach spaces: existence stability of global solutions, Deposited in VINITI 25.04.2000, No 1198-V00, Nizhni Novgorod State University, Nizhni Novgorod, 2000, 75 pp. (in Russian) | MR

[18] Chernov A. V., Volterra operator equations and their application in the theory of optimization of hyperbolic systems, Cand. Sci. (Phys.-Math.) Dissertation, Nizhni Novgorod, 2000, 177 pp. (in Russian)

[19] Sumin V. I., Chernov A. V., “On sufficient conditions of existence stability of global solutions of Volterra operator equations”, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo. Mat. Model. Optim. Upr., 2003, no. 1(26), 39–49 (in Russian)

[20] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | Zbl

[21] Chernov A. V., “Sufficient conditions for the controllability of nonlinear distributed systems”, Comput. Math. Math. Phys., 52:8 (2012), 1115–1127 | DOI | MR | Zbl

[22] Chernov A. V., “On controllability of nonlinear distributed systems on a set of discretized controls”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 83–98 (in Russian) | Zbl

[23] Chernov A. V., “On the convergence of the conditional gradient method in distributed optimization problems”, Comput. Math. Math. Phys., 51:9 (2011), 1510–1523 | DOI | MR | Zbl

[24] Chernov A. V., “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Comput. Math. Math. Phys., 53:12 (2013), 1839–1852 | DOI | MR | Zbl

[25] Chernov A. V., “On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 20, no. 1, 2014, 305–321 (in Russian)

[26] Chernov A. V., “On Volterra functional operator games on a given set”, Automation and Remote Control, 75:4 (2014), 787–803 | DOI | MR | MR | Zbl

[27] Vainberg M. M., Variational method and method of monotone operators in the theory of nonlinear equations, John Wiley Sons, New York–Toronto, 1973 ; Israel Program for Scientific Translations, Jerusalem–London, 1973, xi+356 pp. | MR | MR | Zbl

[28] Chernov A. V., “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Mathematics, 56:3 (2012), 55–65 | DOI | MR | Zbl

[29] Chernov A. V., “A generalization of Bihari's lemma to the case of Volterra operators in Lebesgue spaces”, Mathematical Notes, 94:5 (2013), 703–714 | DOI | MR | Zbl

[30] Sumin V. I., Chernov A. V., “Operators in spaces of measurable functions: the Volterra property and quasinilpotency”, Differ. Equations, 34:10 (1998), 1403–1411 | MR | Zbl

[31] Sumin V. I., Chernov A. V., “On some indicators of the quasi-nilpotency of functional operators”, Russian Mathematics, 44:2 (2000), 75–78 | MR | Zbl

[32] Kantorovich L. V., Akilov G. P., Functional Analysis, Nauka, M., 1984, 752 pp. (in Russian) | MR

[33] Chernov A. V., “On the existence stability of global solutions to a system of hyperbolic equations of the first order under the higher coefficients control”, Proceedings of XXIII conference of young scientists, Lomonosov Moscow State University, M., 2001, 352–355 (in Russian)

[34] Chernov A. V., “On necessary optimality conditions in the problem of higher coefficients control in a system of hyperbolic equations of the first order”, Mathematical modeling and boundary value problems, Proceedings of the Second All-Russian scientific conference, v. 2, Samara State Technical University, Samara, 2005, 259–262 (in Russian)