On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 230-243

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n,m,\ell,s\in\mathbb{N}$ be given numbers, $\Pi\subset\mathbb{R}^n$ be a measurable bounded set, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ be Banach ideal spaces of functions measurable on the set $\Pi$, $\mathcal{D}\subset\mathcal{U}^{s}$ be a convex set, $\mathcal{A}$ be some class of linear bounded operators $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. We study the controlled Hammerstein type functional operator equation as follows \begin{equation} x(t)=\theta(t)+ A\Bigl[ f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \tag{1} \label{eq1} \end{equation} where $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ is the set of controlled parameters; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ is a given function measurable with respect to $t\in\Pi$, continuous with respect to $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ and satisfying to certain natural hypotheses. Eq. \eqref{eq1} is a convenient form of representation of the broad class of controlled distributed systems. For the equation under study we prove a theorem concerning sufficient conditions of global solvability for all $u\in\mathcal{D}$, $A\in\mathcal{A}$ and $\theta$ from a pointwise bounded set. For the original equation we define some majorant and minorant inequalities obtaining them from Eq. \eqref{eq1} with the help of upper and lower estimates of the right-hand side. The theorem is proved providing global solvability of the majorant and minorant inequalities. As an application of obtained general results we prove a theorem concerning the total (with respect to the whole set of admissible controls) global solvability of the mixed boundary value problem for a system of hyperbolic equations of the first order with controlled higher coefficients.
Keywords: totally global solvability, functional operator equation of the Hammerstein type, pointwise estimate of solutions, system of hyperbolic equations of the first order with controlled higher coefficients.
@article{VUU_2015_25_2_a6,
     author = {A. V. Chernov},
     title = {On the totally global solvability of a controlled {Hammerstein} type equation with a varied linear operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {230--243},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 230
EP  - 243
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/
LA  - ru
ID  - VUU_2015_25_2_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 230-243
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/
%G ru
%F VUU_2015_25_2_a6
A. V. Chernov. On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 230-243. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a6/