To question about realization of attraction elements in abstract attainability problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 212-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An abstract attainability problem under constraints of asymptotic character is considered; the corresponding solution is identified with an attraction set in the class of ultrafilters of the space of ordinary solutions. The remainder of the above-mentioned set with respect to closuring the set of results supplied by precise solutions is investigated (the given notion of a precise solution conceptually corresponds to Warga scheme although it is applied to the case of more general constraints). To represent the above-mentioned (basic) attraction set, the corresponding analog (of the last set) realized in the space of generalized elements is used. For thus obtained auxiliary attraction set, the remainder is analyzed; its connection with the remainder of the basic attraction set is investigated. Conditions of identifying the remainders for basic and auxiliary attraction sets are obtained. General statements are detailed for the case when generalized elements are defined in the form of ultrafilters of widely interpreted measurable spaces where free ultrafilters are responsible for the realization of remainders. It is established that, under existence of a remainder, the set of generalized admissible elements does not coincide with closuring a set of ordinary solutions (this set does not admit standard realization).
Keywords: remainder, attraction set, ultrafilter.
@article{VUU_2015_25_2_a5,
     author = {A. G. Chentsov},
     title = {To question about realization of attraction elements in abstract attainability problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {212--229},
     year = {2015},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a5/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - To question about realization of attraction elements in abstract attainability problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 212
EP  - 229
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a5/
LA  - ru
ID  - VUU_2015_25_2_a5
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T To question about realization of attraction elements in abstract attainability problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 212-229
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a5/
%G ru
%F VUU_2015_25_2_a5
A. G. Chentsov. To question about realization of attraction elements in abstract attainability problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 212-229. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a5/

[1] Chentsov A. G., “To the validity of constraints in the class of generalized elements”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 3, 90–109 (in Russian) | MR | Zbl

[2] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 113–142 (in Russian) | Zbl

[3] Warga J., Optimal control of differential and functional equations, Nauka, M., 1977, 624 pp. | MR

[4] Gamkrelidze R. V., Foundations of optimal control, Izd. Tbilis. Univ., Tbilisi, 1975, 230 pp. | MR

[5] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp. | MR

[6] Krasovskii N. N., Control of dynamic system, Nauka, M., 1985, 518 pp. | MR

[7] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981, 288 pp. | MR

[8] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 10–17 (in Russian)

[9] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 11–16 (in Russian) | Zbl

[10] Flachsmeyer J., Terpe F., “Some applications of the theory of compactifications of topological spaces and measure theory”, Russian Mathematical Surveys, 32:5 (1977), 133–171 | DOI | MR | Zbl | Zbl

[11] Kuratovskii K., Mostovskii A., Theory of sets, Mir, M., 1970, 416 pp. | MR

[12] Bulinskii A. V., Shiryaev A. N., Theory of stochastic processes, Fizmatlit, M., 2005, 402 pp.

[13] Engelking R., General topology, Mir, M., 1986, 751 pp. | MR

[14] Burbaki N., General topology, Nauka, M., 1968, 272 pp. | MR

[15] Chentsov A. G., “Some ultrafilter properties connected with extension constructions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 87–101 (in Russian) | Zbl

[16] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[17] Chentsov A. G., “Representation of attraction elements in abstract attainability problems with asymptotic constraints”, Russian Mathematics, 56:10 (2012), 38–49 | MR | Zbl

[18] Chentsov A. G., “Attraction sets in abstract attainability problems: Equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | MR | Zbl

[19] Chentsov A. G., “Tier mappings and ultrafilter-based transformations”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 18, no. 4, 2012, 298–314 (in Russian)

[20] Chentsov A. G., “The nonsequential approximate solutions in problems of asymptotic analysis”, Soochow Journal of Mathematics, 32:3 (2006), 441–475 | MR | Zbl

[21] Chentsov A. G., The elements of finitely additive measures theory, v. I, USTU–UPI, Yekaterinburg, 2008, 388 pp.

[22] Chentsov A. G., The elements of finitely additive measures theory, v. II, USTU–UPI, Yekaterinburg, 2010, 541 pp.

[23] Chentsov A. G., “On one example of representing the ultrafilter space for an algebra of sets”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 4, 2011, 293–311 (in Russian)