@article{VUU_2015_25_2_a3,
author = {S. V. Sokolov and I. S. Koltsov},
title = {Chaotic scattering of the point vortex by falling circular cylinder},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {184--196},
year = {2015},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a3/}
}
TY - JOUR AU - S. V. Sokolov AU - I. S. Koltsov TI - Chaotic scattering of the point vortex by falling circular cylinder JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 184 EP - 196 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a3/ LA - ru ID - VUU_2015_25_2_a3 ER -
%0 Journal Article %A S. V. Sokolov %A I. S. Koltsov %T Chaotic scattering of the point vortex by falling circular cylinder %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 184-196 %V 25 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a3/ %G ru %F VUU_2015_25_2_a3
S. V. Sokolov; I. S. Koltsov. Chaotic scattering of the point vortex by falling circular cylinder. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 184-196. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a3/
[1] Maxwell J. K., “On a particular case of descent of a heavy body in a resisting medium”, Camb. and Dubl. Math. Journ., 9 (1854), 145–148
[2] Zhukovski N. E., “On light elongated bodies that fall in the air while rotating around the longitudinal axis, I”, Complete Works in 7 vol., v. 5, Glav. Red. Aviats. Lit., M.–L., 1937, 72–80 (in Russian) | Zbl
[3] Zhukovski N. E., “On light elongated bodies that fall in the air while rotating around the longitudinal axis, II”, Complete Works in 7 vol., v. 5, Glav. Red. Aviats. Lit., M.–L., 1937, 100–115 (in Russian)
[4] Kozlov V. V., “On the problem of a heavy rigid body falling in a resistant medium”, Vestn. Mosk. Univ., Ser. Mat. Mekh., 1990, no. 1, 79–86 (in Russian)
[5] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118 | MR | Zbl
[6] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of failing rigid body”, Regular and Chaotic Dynamics, 12:5 (2007), 531–565 | MR | Zbl
[7] Chaplygin S. A., “On the effect of a plane-parallel air flow on a cylindrical wing moving in it”, Complete Works, v. 3, Izd. Akad. Nauk SSSR, L., 1933, 3–64 (in Russian)
[8] Kozlov V. V., “On a heavy cylindrical body falling in a fluid”, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1993, no. 4, 113–117 (in Russian) | MR
[9] Ramodanov S. M., “The effect of circulation on the fall of a heavy rigid body”, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1996, no. 5, 19–24 (in Russian)
[10] Kirchhoff G. R., Vorlesungen über mathematische physik, v. I, Teubner, Leipzig, 1876
[11] Borisov A. V., Mamaev I. S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regular and Chaotic Dynamics, 8:2 (2003), 163–166 | MR | Zbl
[12] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamics of a circular cylinder interacting with point vortices”, Discrete and Contin. Dyn. Syst. B, 5:1 (2005), 35–50 | MR | Zbl
[13] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403 | MR | Zbl
[14] Shashikanth B. N., “Poisson brackets for the dynamically interacting system of a 2D rigid cylinder and $N$ point vortices: the case of arbitrary smooth cylinder shapes”, Regular and Chaotic Dynamics, 10:1 (2005), 1–14 | MR | Zbl
[15] Michelin S., Smith S. G. L., “Falling cards and flapping flags: understanding fluid-solid interaction using an unsteady point vortex model”, Theor. Comput. Fluid Dyn., 24 (2010), 195–200 | Zbl
[16] Jones M. A., Shelly M. J., “Falling cards”, J. Fluid Mech., 540 (2005), 393–425 | MR | Zbl
[17] Kadtke J. B., Novikov E. A., “Chaotic capture of vortices by a moving body. I: The single point vortex case”, Chaos, 3:4 (1993), 543–553 | MR | Zbl
[18] Luithardt H. H., Kadtke J. B., Pedrizzetti G., “Chaotic capture of vortices by a moving body. II: Bound pair model”, Chaos, 4:4 (1994), 681–691 | MR | Zbl
[19] Sokolov S. V., Ramodanov S. M., “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Nelineinaya dinamika, 8:3 (2012), 617–628 (in Russian)
[20] Sokolov S. V., Ramodanov S. M., “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Regular and Chaotic Dynamics, 18:1–2 (2013), 184–193 | MR | Zbl
[21] Sokolov S. V., “Falling motion of a circular cylinder interacting dynamically with $N$ point vortices”, Nelineinaya dinamika, 10:1 (2014), 1–14
[22] Sokolov S. V., “Falling motion of a circular cylinder interacting dynamically with $N$ point vortices”, Nonlinear Dynamics and Mobile Robotics, 2:1 (2014), 99–113
[23] Sokolov S. V., “Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 2, 86–99 (in Russian) | MR
[24] Föppl L., “Wirbelbewegung hinter einem Kreiszylinder”, Sitzungsberichte der Baäyrischen Akademie der Wissenschaften, 1913
[25] Manakov S. V., Shchur L. N., “Stochastic aspect of two-particle scattering”, JETP Lett., 37:1 (1983), 54–57
[26] Tophøj L., Aref H., “Chaotic scattering of two identical point vortex pairs revisited”, Phys. of Fluids, 20 (2008), 093605 | Zbl