Numerical simulation of the viscous incompressible fluid flow and heat transfer in a plane channel with backward-facing step
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 280-294
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with the results of solving the problem of steady-state flow of a viscous incompressible fluid in a plane channel with a backward-facing step and a heated bottom wall for the Reynolds number in the range $100\leqslant \mathrm{Re}\leqslant1000$ and the expansion ratio of a plane channel in the range $1.11 \leqslant ER \leqslant 10$. The study was carried out by numerical integration of the 2-D Navier–Stokes equations in velocity-pressure formulation on uniform grids with a step which equals to 1/300. Correction of the results is confirmed by comparing them with the literature data. Detailed flow patterns and fields of stream overheating depending on two basic parameters of the problem $\mathrm{Re}$ and $ER$ are demonstrated. It is shown that with the increase of parameters $\mathrm{Re}$ and $ER$ the structure of flow becomes much more complicated, that is, there is an increase of the number of vortices and their sizes up to the formation of a vortex behind the backward-facing step with two centers of rotation. It is also stated that the typical height of the heating zone of the flow depends weakly on $\mathrm{Re}$ and $ER$ and eventually, near the exit of the channel, equals approximately half of the channel height. For all centers of vortices their main characteristics are defined: location, extremums of stream function, vorticity. Complex nonmonotonic behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number) along the channel are analyzed. It is shown that these coefficients strongly depend both on Reynolds number and on expansion ratio, reaching the maximum values at the maximum values of $\mathrm{Re}$ and $ER$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Navier–Stokes equations, a plane channel with backward-facing step, separating flow.
                    
                  
                
                
                @article{VUU_2015_25_2_a11,
     author = {A. A. Fomin and L. N. Fomina},
     title = {Numerical simulation of the viscous incompressible fluid flow and heat transfer in a plane channel with backward-facing step},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {280--294},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a11/}
}
                      
                      
                    TY - JOUR AU - A. A. Fomin AU - L. N. Fomina TI - Numerical simulation of the viscous incompressible fluid flow and heat transfer in a plane channel with backward-facing step JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 280 EP - 294 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a11/ LA - ru ID - VUU_2015_25_2_a11 ER -
%0 Journal Article %A A. A. Fomin %A L. N. Fomina %T Numerical simulation of the viscous incompressible fluid flow and heat transfer in a plane channel with backward-facing step %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 280-294 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a11/ %G ru %F VUU_2015_25_2_a11
A. A. Fomin; L. N. Fomina. Numerical simulation of the viscous incompressible fluid flow and heat transfer in a plane channel with backward-facing step. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 280-294. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a11/
