@article{VUU_2015_25_2_a1,
author = {V. A. Zaitsev},
title = {Criteria for uniform complete controllability of a linear system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {157--179},
year = {2015},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a1/}
}
TY - JOUR AU - V. A. Zaitsev TI - Criteria for uniform complete controllability of a linear system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 157 EP - 179 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a1/ LA - ru ID - VUU_2015_25_2_a1 ER -
V. A. Zaitsev. Criteria for uniform complete controllability of a linear system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 2, pp. 157-179. http://geodesic.mathdoc.fr/item/VUU_2015_25_2_a1/
[1] Filippov A. F., Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, Dordrecht, 1988 | MR
[2] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematisa Mexicana, 5:1 (1960), 102–119 | MR | Zbl
[3] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp. | MR
[4] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M., 1966, 576 pp. | MR
[5] Popova S. N., Problems of control over Lyapunov exponents, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 1992, 103 pp. (in Russian)
[6] Tonkov E. L., “A criterion for uniform controllability and stabilization of a linear recurrent system”, Differ. Uravn., 15:10 (1979), 1804–1813 (in Russian) | MR | Zbl
[7] Tonkov E. L., On the theory of linear control systems, Dr. Sci. (Phys.-Math.) Dissertation, Sverdlovsk, 1983, 267 pp. (in Russian)
[8] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.
[9] Silverman L. M., Meadows H. E., “Degrees of controllability in time-variable linear systems”, Proceedings of the National Electronics Conference, 21 (1965), 689–693
[10] Silverman L. M., “Transformation of time-variable systems to canonical (phase-variable) form”, IEEE Transactions on Automatic Control, AC-11:2 (1966), 300–303
[11] Silverman L. M., Meadows H. E., “Controllability and observability in time-variable linear systems”, SIAM Journal on Control, 5:1 (1967), 64–73 | MR | Zbl
[12] Gaishun I. V., Introduction to the theory of linear non-stationary systems, Editorial URSS, M., 2004, 408 pp.
[13] Smirnov E. Ya., Some problems of mathematical theory of control, Leningrad State University, L., 1981, 200 pp. | MR
[14] Kultyshev S. Yu., Tonkov E. L., “Controllability of a linear non-stationary system”, Differ. Uravn., 11:7 (1975), 1206–1216 (in Russian) | MR | Zbl
[15] Popova S. N., “On problem of control over Lyapunov exponents”, Vestn. Udmurt. Univ. Mat., 1992, no. 1, 23–39 (in Russian) | MR
[16] Makarov E. K., Popova S. N., “Local controllability of Lyapunov characteristic exponents for systems with simple exponents”, Differential Equations, 33:4 (1997), 496–500 | MR | Zbl
[17] Makarov E. K., Popova S. N., “The global controllability of a complete set of Lyapunov invariants for two-dimensional linear systems”, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl
[18] Makarov E. K., Popova S. N., “Global controllability of central exponents of linear systems”, Russian Mathematics, 43:2 (1999), 56–63 | MR | Zbl
[19] Popova S. N., “On global controllability of the complete set of Lyapunov invariants for periodic systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, no. 2(25), 79–80 (in Russian)
[20] Popova S. N., “Equivalence between local attainability and complete controllability of linear systems”, Russian Mathematics, 46:6 (2002), 48–51 | MR | Zbl
[21] Popova S. N., “Local attainability for linear control systems”, Differential Equations, 39:1 (2003), 51–58 | MR | Zbl
[22] Makarov E. K., Popova S. N., “Sufficient conditions for the local proportional controllability of Lyapunov exponents of linear systems”, Differential Equations, 39:2 (2003), 234–245 | MR | Zbl
[23] Popova S. N., “Global controllability of the complete set of Lyapunov invariants of periodic systems”, Differential Equations, 39:12 (2003), 1713–1723 | MR | Zbl
[24] Popova S. N., “Global reducibility of linear control systems to systems of scalar type”, Differential Equations, 40:1 (2004), 43–49 | MR | Zbl
[25] Popova S. N., “Simultaneous local controllability of the spectrum and the Lyapunov irregularity coefficient of regular systems”, Differential Equations, 40:3 (2004), 461–465 | MR | Zbl
[26] Zaitsev V. A., Makarov E. K., Popova S. N., Tonkov E. L., “Problems of control over Lyapunov invariants”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 3(37), 43–48 (in Russian)
[27] Zaitsev V. A., “Uniform complete controllability and Lyapunov reducibility of a two-dimensional quasi-differential equation”, Vestn. Udmurt. Univ. Mat., 2007, no. 1, 55–66 (in Russian) | MR
[28] Zaitsev V. A., “Lyapunov reducibility and stabilization of nonstationary systems with observer”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 12:4 (2007), 451–452
[29] Popova S. N., “On the global controllability of Lyapunov exponents of linear systems”, Differential Equations, 43:8 (2007), 1072–1078 | MR | Zbl
[30] Kozlov A. A., “On the control of Lyapunov exponents of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 44:10 (2008), 1375–1392 | MR | Zbl
[31] Zaitsev V. A., “Lyapunov reducibility and stabilization of nonstationary systems with an observer”, Differential Equations, 46:3 (2010), 437–447 | MR | Zbl
[32] Zaitsev V. A., Tonkov E. L., “Uniform exponential stabilization of a family of control systems”, Differential Equations, 47:6 (2011), 910–911 | MR
[33] Horn R., Johnson C., Matrix analysis, Cambridge University Press, Cambridge, 1988
[34] Zaitsev V. A., Popova S. N., Tonkov E. L., “On the property of uniform complete controllability of a discrete-time linear control system”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 53–63 (in Russian) | MR
[35] Zaitsev V. A., “Quasidifferential equation controllability”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 1, 90–100 (in Russian)
[36] Demidovich B. P., Lectures on the mathematical stability theory, Nauka, M., 1967, 472 pp. | MR