Two-dimensional difference Dirac operator in the strip
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 93-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the last decade, a new class of materials – topological insulators – is extensively studied in the physics literature. Topological insulators have remarkable physical properties, in particular, near-zero resistance, and are expected to be applied in microelectronics. Unlike conventional metals and semiconductors, an electron in topological insulators is described not by the Schrodinger operator (Hamiltonian), but by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting from a mathematical point of view, but they are not well studied by mathematicians yet. This article discusses the Dirac Hamiltonian of a topological insulator of somewhat more general form, namely in the presence of a ferromagnetic layer. The spectrum of such an operator is described; its Green's function (the kernel of the resolvent) and (generalized) eigenfunctions are established.
Keywords: discrete difference Dirac operator, resolution, spectrum.
@article{VUU_2015_25_1_a9,
     author = {T. S. Tinyukova},
     title = {Two-dimensional difference {Dirac} operator in the strip},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {93--100},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a9/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - Two-dimensional difference Dirac operator in the strip
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 93
EP  - 100
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a9/
LA  - ru
ID  - VUU_2015_25_1_a9
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T Two-dimensional difference Dirac operator in the strip
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 93-100
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a9/
%G ru
%F VUU_2015_25_1_a9
T. S. Tinyukova. Two-dimensional difference Dirac operator in the strip. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 93-100. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a9/

[1] Hasan M. Z., Kane C. L., “Colloquium: topological insulators”, Rev. Mod. Phys., 82 (2010), 3045–3067 | DOI

[2] Bardarson J. H., Moore J. E., “Quantum interference and Aharonov–Bohm oscillations in topological insulators”, Rep. Prog. Phys., 76 (2012), 056501 | DOI

[3] Yokoyama T., Tanaka Y., Nagaosa N., “Anomalous magnetoresistance of a two-dimensional ferromagnet/ ferromagnet junction on the surface of a topological insulator”, Phys. Rev. B, 81 (2010), 121401(R) | DOI

[4] Chuburin Y. P., “Electron scattering on the surface of a topological insulator”, Phys. A.: Math. Theor., 47 (2014), 255203, 13 pp. | DOI | MR | Zbl

[5] Morozova L. E., Chuburin Yu. P., “On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1(29), 85–94