Convergence of the difference method of solving the two-dimensional wave equation with heredity
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 78-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the consideration of the wave equation with two space variables and one time variable and with heredity effect $$ \frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\quad u_t(x,y,\cdot)=\big\{u(x,y,t+\xi),-\tau\le\xi\le0\big\}. $$ A family of grid methods is constructed for the numerical solution of this equation; the methods are based on the idea of separating the current state and the history function. A complete analog of the factorization method which is known for an equation without delay is constructed according to the current state. Influence of prehistory is taken into consideration by interpolation constructions. The local error order of the algorithm is investigated. A theorem on the convergence and on the order of convergence of methods is obtained by means of embedding into a general difference scheme with aftereffect. The results of calculating a test example with variable delay are presented.
Keywords: difference methods, two-dimensional wave equation, time delay, factorization, order of convergence.
Mots-clés : interpolation
@article{VUU_2015_25_1_a8,
     author = {E. E. Tashirova},
     title = {Convergence of the difference method of solving the two-dimensional wave equation with heredity},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {78--92},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a8/}
}
TY  - JOUR
AU  - E. E. Tashirova
TI  - Convergence of the difference method of solving the two-dimensional wave equation with heredity
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 78
EP  - 92
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a8/
LA  - ru
ID  - VUU_2015_25_1_a8
ER  - 
%0 Journal Article
%A E. E. Tashirova
%T Convergence of the difference method of solving the two-dimensional wave equation with heredity
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 78-92
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a8/
%G ru
%F VUU_2015_25_1_a8
E. E. Tashirova. Convergence of the difference method of solving the two-dimensional wave equation with heredity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 78-92. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a8/

[1] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, New York, 1996, 438 pp. | MR

[2] Pimenov V. G., Tashirova E. E., “Numerical methods for solving a hereditary equation of hyperbolic type,”, Proceedings of the Steklov Institute of Mathematics, 281, 2013, S126–S136 | DOI

[3] Pimenov V. G., Lozhnikov A. B., “Difference schemes for the numerical solution of the heat conduction equation with aftereffect”, Proceedings of the Steklov Institute of Mathematics, 275, 2011, S137–S148 | DOI | Zbl

[4] Samarskii A. A., Theory of difference schemes, Nauka, Moscow, 1989, 656 pp. | MR

[5] Pimenov V. G., “General linear methods for the numerical solution of functional-differential equations”, Differential Equations, 37:1 (2001), 116–127 | DOI | MR | Zbl

[6] Kim A. V., Pimenov V. G., i-smooth calculus and numerical methods for functional differential equations, Regular and Chaotic Dynamics, Moscow–Izhevsk, 2004, 256 pp.

[7] Lekomtsev A. V., Pimenov V. G., “Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay”, Proceedings of the Steklov Institute of Mathematics, 272, 2011, S101–S118 | DOI | Zbl

[8] Kalitkin N. N., Numerical methods, BHV-Petersburg, St. Petersburg, 2011, 586 pp.

[9] Tashirova E. E., “Numerical methods for solving two-dimensional wave equation with aftereffect”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 18:5-2 (2013), 2704–2706 (in Russian)