Cubic forms without monomials in two variables
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a general cubic form over the field of complex numbers can be transformed into a form without monomials of exactly two variables by means of a non-degenerate linear transformation of coordinates. If the coefficients of monomials in only one variable are equal to one, and the remaining coefficients belong to sufficiently small polydisc near zero, then the transformation can be approximated by iterative algorithm. Under these restrictions the same result holds over the reals. This result generalizes the Levy–Desplanques theorem on strictly diagonally dominant matrices. We discuss in detail the properties of reducible cubic forms. So we prove the existence of a reducible real cubic form that is not equivalent to any form with all monomials in only one variable and without any monomials in exactly two variables. We suggest a sufficient condition for the existence of a singular point on a projective cubic hypersurface. The computational complexity of singular points recognition is discussed.
Keywords: cubic form, linear transformation, singular point.
@article{VUU_2015_25_1_a7,
     author = {A. V. Seliverstov},
     title = {Cubic forms without monomials in two variables},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {71--77},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a7/}
}
TY  - JOUR
AU  - A. V. Seliverstov
TI  - Cubic forms without monomials in two variables
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 71
EP  - 77
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a7/
LA  - ru
ID  - VUU_2015_25_1_a7
ER  - 
%0 Journal Article
%A A. V. Seliverstov
%T Cubic forms without monomials in two variables
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 71-77
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a7/
%G ru
%F VUU_2015_25_1_a7
A. V. Seliverstov. Cubic forms without monomials in two variables. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a7/

[1] Latypova N. V., “Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 3, 2011, 233–241 (in Russian)

[2] Latypova N. V., “Error of interpolation by sixth-degree polynomials on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 79–87 (in Russian) | Zbl

[3] Rodionov V. I., “On application of special multivariate splines of any degree in the numerical analysis”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 4, 146–153 (in Russian)

[4] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, 1986, 575 pp. | MR

[5] Hu S., Qi L., “The E-eigenvectors of tensors”, Linear and Multilinear Algebra, 62:10 (2014), 1388–1402 | DOI | MR | Zbl

[6] Cartwright D., Sturmfels B., “The number of eigenvalues of a tensor”, Linear Algebra and its Applications, 438:2 (2013), 942–952 | DOI | MR | Zbl

[7] Shao J., Qi L., Hu S., “Some new trace formulas of tensors with applications in spectral hypergraph theory”, Linear and Multilinear Algebra, 63:5 (2015), 971–992 | DOI | MR | Zbl

[8] Evdokimov A. A., Kochemazov S. E., Otpushchennikov I. V., Semenov A. A., “Study of discrete automaton models of gene networks of nonregular structure using symbolic calculations”, Journal of Applied and Industrial Mathematics, 8:3 (2014), 307–316 | DOI

[9] Prasolov V., Solovyev Yu., Elliptic functions and elliptic integrals, Translations of Mathematical Monographs, 170, American Mathematical Society, 1997, 185 pp. | MR | Zbl

[10] Artebani M., Dolgachev I., “The Hesse pencil of plane cubic curves”, L'Enseignement Mathématique, 55:3–4 (2009), 235–273 | DOI | MR | Zbl

[11] Emch A., “On a new normal form of the general cubic surface”, American Journal of Mathematics, 53:4 (1931), 902–910 | DOI | MR | Zbl

[12] Emch A., “Properties of the cubic surface derived from a new normal form”, American Journal of Mathematics, 61:1 (1939), 115–122 | DOI | MR | Zbl

[13] Grigor'ev D. Yu., “The complexity of the decision problem for the first order theory of algebraically closed fields”, Mathematics of the USSR. Izvestiya, 29:2 (1987), 459–475 | DOI | MR | Zbl | Zbl

[14] Gershgorin R. A., Rubanov L. I., Seliverstov A. V., “Easy computable invariants for hypersurface recognition”, Information Processes, 14:4 (2014), 365–369 (in Russian) http://www.jip.ru/2014/365-369-2014.pdf

[15] Morozov A. Yu., Shakirov Sh. R., “New and old results in resultant theory”, Theoret. and Math. Phys., 163:2 (2010), 587–617 | DOI | DOI | Zbl

[16] Chistov A. L., “An improvement of the complexity bound for solving systems of polynomial equations”, J. Math. Sci. (New York), 181:6 (2012), 921–924 | DOI | MR | Zbl

[17] Håstad J., “Tensorrank is NP-complete”, Journal of Algorithms, 11 (1990), 644–654 | DOI | MR

[18] Oeding L., Ottaviani G., “Eigenvectors of tensors and algorithms for Waring decomposition”, Journal of Symbolic Computation, 54 (2013), 9–35 | DOI | MR | Zbl

[19] Gashkov S. B., Shavgulidze E. T., “Representation of monomials as a sum of powers of linear forms”, Moscow Univ. Math. Bull., 69:2 (2014), 51–55 | DOI | MR | Zbl