Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 60-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with discrete Kaldor macroeconomic model under the random disturbances. It is shown that in the deterministic version of the model, there are different regimes of dynamics: equilibria, cycles, invariant curves, and chaos. A parametric description of the intervals of structural stability is given for these regimes and the corresponding bifurcations. Under the influence of stochastic perturbations around the deterministic attractors, the stationary probability distributions of random states are formed. To describe the dispersion of random states around equilibria and cycles, the stochastic sensitivity functions technique and the method of confidence ellipses are used. A dependence of the stochastic sensitivity of the system from parameters is studied. The phenomena generated by noise-induced transitions between coexisting attractors are discussed.
Keywords: discrete Kaldor model, business cycles, stochastic sensitivity function, noise-induced transitions, confidence ellipses.
Mots-clés : random perturbations
@article{VUU_2015_25_1_a6,
     author = {L. B. Ryashko and A. A. Sysolyatina},
     title = {Analysis of stochastic dynamics in discrete-time macroeconomic {Kaldor} model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {60--70},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/}
}
TY  - JOUR
AU  - L. B. Ryashko
AU  - A. A. Sysolyatina
TI  - Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 60
EP  - 70
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/
LA  - ru
ID  - VUU_2015_25_1_a6
ER  - 
%0 Journal Article
%A L. B. Ryashko
%A A. A. Sysolyatina
%T Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 60-70
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/
%G ru
%F VUU_2015_25_1_a6
L. B. Ryashko; A. A. Sysolyatina. Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 60-70. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/

[1] Kaldor N., “A model of the trade cycle”, The Economics Journal, 50:197 (1940), 78–92 | DOI

[2] Kaldor N., “A model of economic growth”, The Economic Journal, 67:268 (1957), 391–624 | DOI

[3] Chang W. W., Smyth D. J., “The existence and persistence of cycles in a non-linear model: Kaldor's 1940 model reexamined”, The Review Economics Studies, 38:1 (1971), 37–44 | DOI | Zbl

[4] Varian H.R. Catastrophe theory and the business cycle, Economic Inquiry, 17:1 (1979), 14–28 | DOI

[5] Gabisch G., Lorenz H.-W., Business cycle theory: a survey of methods and concepts, Second edition, Springer-Verlag, Berlin, 1989, 248 pp. | Zbl

[6] Bischi G. I., Dieci R., Rodano G., Saltari E., “Multiple attractors and global bifurcations in a Kaldor-type business cycle model”, Journal of Evolutionary Economics, 11:5 (2001), 527–554 | DOI

[7] Neimark Yu. I., Landa P. S., Stochastic and chaotic oscillations, Nauka, Moscow, 1987, 424 pp. | MR

[8] Crutchfield J. P., Farmer J. D., Huberman B. A., “Fluctuation and simple chaotic dynamics”, Phys. Rep., 92:2 (1982), 45–82 | DOI | MR

[9] Lasota A., Mackey M. C., Chaos, fractals, and noise. Stochastic aspects of dynamics, Applied Mathematical Sciences, 97, Second edition, Springer-Verlag, New York, 1994, 474 pp. | DOI | MR | Zbl

[10] Anikin V. M., Golubentsev A. F., Analytical models of deterministic chaos, Fizmatlit, Moscow, 2007, 328 pp.

[11] Bashkirtseva I., Ryashko L., Tsvetkov I., “Stochastic sensitivity equilibria and cycles of one-dimensional discrete mappings”, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinejn. Din., 17:6 (2009), 74–85 (in Russian)

[12] Bashkirtseva I., Ryashko L., Tsvetkov I., “Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 17 (2010), 501–515 | MR | Zbl

[13] Sacker R. J., On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM–NYU 333, New York University, 1964 | MR

[14] Kuznetsov Yu. A., Elements of applied bifurcation theory, Applied Mathematical Sciences, 112, 3rd ed., Springer, New York, 2004, 632 pp. | DOI | MR | Zbl

[15] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514 | DOI

[16] Bashkirtseva I., Ryashko L., Slepukhina E., “Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model”, Fluctuation and Noise Letters, 13:1 (2014), 1450004 | DOI