Mots-clés : random perturbations
@article{VUU_2015_25_1_a6,
author = {L. B. Ryashko and A. A. Sysolyatina},
title = {Analysis of stochastic dynamics in discrete-time macroeconomic {Kaldor} model},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {60--70},
year = {2015},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/}
}
TY - JOUR AU - L. B. Ryashko AU - A. A. Sysolyatina TI - Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 60 EP - 70 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/ LA - ru ID - VUU_2015_25_1_a6 ER -
%0 Journal Article %A L. B. Ryashko %A A. A. Sysolyatina %T Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 60-70 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/ %G ru %F VUU_2015_25_1_a6
L. B. Ryashko; A. A. Sysolyatina. Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 60-70. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a6/
[1] Kaldor N., “A model of the trade cycle”, The Economics Journal, 50:197 (1940), 78–92 | DOI
[2] Kaldor N., “A model of economic growth”, The Economic Journal, 67:268 (1957), 391–624 | DOI
[3] Chang W. W., Smyth D. J., “The existence and persistence of cycles in a non-linear model: Kaldor's 1940 model reexamined”, The Review Economics Studies, 38:1 (1971), 37–44 | DOI | Zbl
[4] Varian H.R. Catastrophe theory and the business cycle, Economic Inquiry, 17:1 (1979), 14–28 | DOI
[5] Gabisch G., Lorenz H.-W., Business cycle theory: a survey of methods and concepts, Second edition, Springer-Verlag, Berlin, 1989, 248 pp. | Zbl
[6] Bischi G. I., Dieci R., Rodano G., Saltari E., “Multiple attractors and global bifurcations in a Kaldor-type business cycle model”, Journal of Evolutionary Economics, 11:5 (2001), 527–554 | DOI
[7] Neimark Yu. I., Landa P. S., Stochastic and chaotic oscillations, Nauka, Moscow, 1987, 424 pp. | MR
[8] Crutchfield J. P., Farmer J. D., Huberman B. A., “Fluctuation and simple chaotic dynamics”, Phys. Rep., 92:2 (1982), 45–82 | DOI | MR
[9] Lasota A., Mackey M. C., Chaos, fractals, and noise. Stochastic aspects of dynamics, Applied Mathematical Sciences, 97, Second edition, Springer-Verlag, New York, 1994, 474 pp. | DOI | MR | Zbl
[10] Anikin V. M., Golubentsev A. F., Analytical models of deterministic chaos, Fizmatlit, Moscow, 2007, 328 pp.
[11] Bashkirtseva I., Ryashko L., Tsvetkov I., “Stochastic sensitivity equilibria and cycles of one-dimensional discrete mappings”, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinejn. Din., 17:6 (2009), 74–85 (in Russian)
[12] Bashkirtseva I., Ryashko L., Tsvetkov I., “Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 17 (2010), 501–515 | MR | Zbl
[13] Sacker R. J., On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM–NYU 333, New York University, 1964 | MR
[14] Kuznetsov Yu. A., Elements of applied bifurcation theory, Applied Mathematical Sciences, 112, 3rd ed., Springer, New York, 2004, 632 pp. | DOI | MR | Zbl
[15] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514 | DOI
[16] Bashkirtseva I., Ryashko L., Slepukhina E., “Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model”, Fluctuation and Noise Letters, 13:1 (2014), 1450004 | DOI