Lyapunov functions and comparison theorems for control systems with impulsive actions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 51-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the results of E. L. Tonkov and E. A. Panasenko to differential equations and control systems with impulsive actions. In terms of Lyapunov functions and the Clarke derivative we obtain comparison theorems for systems with impulsive effect. We consider the set $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb R^n\colon x\in M(t)\bigr\}$, defined by continuous function $t\to M(t)$, where for every $t\in\mathbb R$ the set $M(t)$ is nonempty and compact. We obtain conditions for the positive invariance of this set, the uniform Lyapunov stability and the uniform asymptotic stability. We make a comparison with the researches of other authors who have considered the zero solution stability for similar systems.
Keywords: control systems with impulsive actions, Lyapunov function, differential inclusions.
@article{VUU_2015_25_1_a5,
     author = {Ya. Yu. Larina},
     title = {Lyapunov functions and comparison theorems for control systems with impulsive actions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {51--59},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a5/}
}
TY  - JOUR
AU  - Ya. Yu. Larina
TI  - Lyapunov functions and comparison theorems for control systems with impulsive actions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 51
EP  - 59
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a5/
LA  - ru
ID  - VUU_2015_25_1_a5
ER  - 
%0 Journal Article
%A Ya. Yu. Larina
%T Lyapunov functions and comparison theorems for control systems with impulsive actions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 51-59
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a5/
%G ru
%F VUU_2015_25_1_a5
Ya. Yu. Larina. Lyapunov functions and comparison theorems for control systems with impulsive actions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a5/

[1] Gurman V. I., “Optimal processes of singular control”, Automat. Remote Control, 26:5 (1965), 783–792 | MR | Zbl

[2] Gurman V. I., Singular problems of optimal control, Nauka, Moscow, 1977, 304 pp. | MR

[3] Dykhta V. A., Samsonyuk O. N., Optimal impulse control with applications, Fizmatlit, Moscow, 2000, 256 pp. | MR

[4] Zavalishchin S. T., Sesekin A. N., Impulse processes: models and applications, Nauka, Moscow, 1991, 256 pp. | MR

[5] Miller B. M., “Method of discontinuous time change in optimal control pulse and discrete-continuous systems”, Automat. Remote Control, 54:12 (1993), 1727–1750 | MR | Zbl

[6] Myshkis A. D., “Stability of solutions of differential equations under generalized pulse perturbations”, Automat. Remote Control, 68:10 (2007), 1844–1851 | DOI | MR | Zbl

[7] Sesekin A. N., “On the connectedness of the set of discontinuous solutions of a nonlinear dynamical system with impulse control”, Russian Mathematics, 40:11 (1996), 82–89 | MR | Zbl

[8] Samoilenko A. M., Perestyuk N. A., Impulsive differential equations, Vishcha shkola, Kiev, 1987, 287 pp.

[9] Lakshmikantham V., Leela S., Martynyuk A. A., Stability of motion: comparison method, Naukova dumka, Kiev, 1991, 247 pp. | MR

[10] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, 2008, 194–212 | DOI | MR | Zbl

[11] Panasenko E. A., Tonkov E. L. Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems, Proceedings of the Steklov Institute of Mathematics, 268, 2010, 204–221 | DOI | MR

[12] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164 (in Russian) | Zbl

[13] Rodina L. I., “Estimation of statistical characteristics of attainability sets of controllable systems”, Russian Mathematics, 57:11 (2013), 17–27 | DOI | MR | Zbl

[14] Filippov A. F., Differential equations with discontinuous right-hand side, Nauka, Moscow, 1985, 223 pp. | MR

[15] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl

[16] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, Princeton University Press, New Jersey, 1960, 523 pp. | MR | Zbl

[17] Federer H., Geometric theory of measure, Nauka, Moscow, 1987, 761 pp. | MR

[18] Filippov V. V., Spaces of solutions of ordinary differential equations, Moscow State University, Moscow, 1993, 336 pp. | MR

[19] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, Moscow, 1967, 472 pp. | MR

[20] Chaplygin S. A., A new method of approximate integration of differential equations, Gostekhizdat, Moscow–Leningrad, 1950, 102 pp.