Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 21-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differential equation \begin{equation} Lx\doteq x''+P(t)x'+Q(t)x=0,\qquad t\in[a, b]\subset\mathcal I\doteq(\alpha,\beta)\subset\mathbb R, \end{equation} where $P,Q$ are $C$-generalized functions defined on $\mathcal I$ and are known as equivalence classes of Colombeau algebra. Let $\mathcal R_P$ and $\mathcal R_Q$ be representatives of $P$ and $Q$ respectively, $\mathcal A_N$ are classes of functions with compact support used to define Colombeau algebra. We obtain new sufficient conditions for disconjugacy of the equation (1). We prove that if the condition \begin{equation*} (\exists N\in\mathbb N)\,(\forall\varphi\in\mathcal A_N)\,(\exists\mu_01)\ \int_a^b|\mathcal R_P(\varphi_\mu,t)|\,dt+\int_a^b|\mathcal R_Q(\varphi_\mu,t)|\,dt\frac4{b-a+4}\quad(0\mu\mu_0), \end{equation*} is satisfied, where $\varphi_\mu\doteq\frac1\mu\varphi\left(\frac t\mu\right)$, then the equation (1) is disconjugate on $[a,b]$. We prove the separation theorem and its corollary.
Keywords: $C$-generalized function, $C$-generalized number, weak equation, disconjugacy.
@article{VUU_2015_25_1_a2,
     author = {I. G. Kim},
     title = {Disconjugacy of solutions of a~second order differential equation with {Colombeau} generalized functions in coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/}
}
TY  - JOUR
AU  - I. G. Kim
TI  - Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 21
EP  - 28
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/
LA  - ru
ID  - VUU_2015_25_1_a2
ER  - 
%0 Journal Article
%A I. G. Kim
%T Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 21-28
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/
%G ru
%F VUU_2015_25_1_a2
I. G. Kim. Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 21-28. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/