Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 21-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a differential equation
\begin{equation}
Lx\doteq x''+P(t)x'+Q(t)x=0,\qquad t\in[a, b]\subset\mathcal I\doteq(\alpha,\beta)\subset\mathbb R,
\end{equation}
where $P,Q$ are $C$-generalized functions defined on $\mathcal I$ and are known as equivalence classes of Colombeau algebra. Let $\mathcal R_P$ and $\mathcal R_Q$ be representatives of $P$ and $Q$ respectively, $\mathcal A_N$ are classes of functions with compact support used to define  Colombeau algebra. We obtain new sufficient conditions for disconjugacy of the equation (1). We prove that if the condition
\begin{equation*}
(\exists N\in\mathbb N)\,(\forall\varphi\in\mathcal A_N)\,(\exists\mu_01)\ \int_a^b|\mathcal R_P(\varphi_\mu,t)|\,dt+\int_a^b|\mathcal R_Q(\varphi_\mu,t)|\,dt\frac4{b-a+4}\quad(0\mu\mu_0),
\end{equation*}
is satisfied, where $\varphi_\mu\doteq\frac1\mu\varphi\left(\frac t\mu\right)$, then the equation (1) is disconjugate on $[a,b]$.  We prove the separation theorem and its corollary.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$C$-generalized function, $C$-generalized number, weak equation, disconjugacy.
                    
                  
                
                
                @article{VUU_2015_25_1_a2,
     author = {I. G. Kim},
     title = {Disconjugacy of solutions of a~second order differential equation with {Colombeau} generalized functions in coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/}
}
                      
                      
                    TY - JOUR AU - I. G. Kim TI - Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 21 EP - 28 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/ LA - ru ID - VUU_2015_25_1_a2 ER -
%0 Journal Article %A I. G. Kim %T Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 21-28 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/ %G ru %F VUU_2015_25_1_a2
I. G. Kim. Disconjugacy of solutions of a~second order differential equation with Colombeau generalized functions in coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 21-28. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/
