Disconjugacy of solutions of a second order differential equation with Colombeau generalized functions in coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 21-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a differential equation \begin{equation} Lx\doteq x''+P(t)x'+Q(t)x=0,\qquad t\in[a, b]\subset\mathcal I\doteq(\alpha,\beta)\subset\mathbb R, \end{equation} where $P,Q$ are $C$-generalized functions defined on $\mathcal I$ and are known as equivalence classes of Colombeau algebra. Let $\mathcal R_P$ and $\mathcal R_Q$ be representatives of $P$ and $Q$ respectively, $\mathcal A_N$ are classes of functions with compact support used to define Colombeau algebra. We obtain new sufficient conditions for disconjugacy of the equation (1). We prove that if the condition \begin{equation*} (\exists N\in\mathbb N)\,(\forall\varphi\in\mathcal A_N)\,(\exists\mu_0<1)\ \int_a^b|\mathcal R_P(\varphi_\mu,t)|\,dt+\int_a^b|\mathcal R_Q(\varphi_\mu,t)|\,dt<\frac4{b-a+4}\quad(0<\mu<\mu_0), \end{equation*} is satisfied, where $\varphi_\mu\doteq\frac1\mu\varphi\left(\frac t\mu\right)$, then the equation (1) is disconjugate on $[a,b]$. We prove the separation theorem and its corollary.
Keywords: $C$-generalized function, $C$-generalized number, weak equation, disconjugacy.
@article{VUU_2015_25_1_a2,
     author = {I. G. Kim},
     title = {Disconjugacy of solutions of a~second order differential equation with {Colombeau} generalized functions in coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {21--28},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/}
}
TY  - JOUR
AU  - I. G. Kim
TI  - Disconjugacy of solutions of a second order differential equation with Colombeau generalized functions in coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 21
EP  - 28
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/
LA  - ru
ID  - VUU_2015_25_1_a2
ER  - 
%0 Journal Article
%A I. G. Kim
%T Disconjugacy of solutions of a second order differential equation with Colombeau generalized functions in coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 21-28
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/
%G ru
%F VUU_2015_25_1_a2
I. G. Kim. Disconjugacy of solutions of a second order differential equation with Colombeau generalized functions in coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 21-28. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a2/

[1] Derr V. Ya., “Disconjugacy of solutions of linear differential equations”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 1, 46–89 (in Russian)

[2] Colombeau J. F., Elementary introduction to new generalized functions, North-Holland Math. Studies, 113, North-Holland Publ., Amsterdam, 1985, 300 pp. | MR | Zbl

[3] Derr V. Ya., Dizendorf K. I., “On differential equations in $C$-generalized functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 11(414), 39–49 (in Russian) | MR | Zbl

[4] Derr V. Ya., Kim I. G., “The spaces of regulated functions and differential equations with generalized functions in coefficients”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 3–18 (in Russian) | Zbl

[5] Derr V. Ya., Theory of functions of a real variable, Lectures and exercises, Vyssh. Shkola, Moscow, 2008, 384 pp.

[6] Tolstonogov A. A., “Properties of the space of proper functions”, Mathematical Notes, 35:6 (1984), 422–427 | DOI | MR | Zbl

[7] Dieudonne J., Foundations of modern analysis, Academic Press, New York, 2006, 408 pp. | MR | MR

[8] Schwartz L., Analyse mathematique, v. 1, Hermann, Paris, 1967, 554 pp. | Zbl

[9] Ligeza J., “Remarks on generalized solutions of some ordinary nonlinear differential equations of second order in the Colombeau algebra”, Annales Mathematicae Silesianae, 10 (1996), 87–101 | MR | Zbl