On the linear algorithm of numerical solution of a boundary value problem for a simple wave equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 126-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of a boundary value problem for a simple wave equation defined on a rectangle can be represented as a sum of two terms. They are solutions of two boundary value problems: in the first case, the boundary functions are constant, while in the second the initial functions have a special form. Such decomposition allows to apply two-dimensional splines for the numerical solution of both problems. The first problem was studied previously, and an economical algorithm of its numerical solution was developed. To solve the second problem we define a finite-dimensional space of splines of Lagrangian type, and recommend an optimal spline giving the smallest residual as a solution. We obtain exact formulas for the coefficients of this spline and its residual. The formula for the coefficients of this spline is a linear form of initial finite differences defined on the boundary. The formula for the residual is a sum of two simple terms and two positive definite quadratic forms of new finite differences defined on the boundary. Elements of matrices of forms are expressed through Chebyshev polynomials, both matrices are invertible and have the property that their inverses matrices are of tridiagonal form. This feature allows us to obtain upper and lower bounds for the spectrum of matrices, and to show that the residual tends to zero when the numerical problem dimension increases. This fact ensures the correctness of the proposed algorithm of numerical solution of the second problem which has linear computational complexity.
Keywords: wave equation, approximate spline, Chebyshev polynomials.
Mots-clés : interpolation, tridiagonal matrix
@article{VUU_2015_25_1_a13,
     author = {V. I. Rodionov},
     title = {On the linear algorithm of numerical solution of a~boundary value problem for a~simple wave equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {126--144},
     year = {2015},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a13/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On the linear algorithm of numerical solution of a boundary value problem for a simple wave equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 126
EP  - 144
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a13/
LA  - ru
ID  - VUU_2015_25_1_a13
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On the linear algorithm of numerical solution of a boundary value problem for a simple wave equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 126-144
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a13/
%G ru
%F VUU_2015_25_1_a13
V. I. Rodionov. On the linear algorithm of numerical solution of a boundary value problem for a simple wave equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 126-144. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a13/

[1] Rodionov V. I., “On application of special multivariate splines of any degree in the numerical analysis”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 4, 146–153 (in Russian)

[2] Rodionov V. I., Rodionova N. V., “Exact formulas for coefficients and residual of optimal approximate spline of simplest heat conduction equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 4, 154–171 (in Russian)

[3] Rodionov V. I., Rodionova N. V., “Exact solution of optimization task generated by simplest heat conduction equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 141–156 (in Russian) | Zbl

[4] Rodionov V. I., “On solution of one optimization problem generated by simplest heat conduction equation”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2014, no. 1(43), 49–67 (in Russian) | Zbl

[5] Rodionova N. V., “Exact formulas for coefficients and residual of optimal approximate spline of simplest wave equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 1, 144–154 (in Russian) | Zbl

[6] Rodionova N. V., “Exact solution of optimization task generated by simplest wave equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 141–152 (in Russian) | Zbl

[7] Rodionov V. I., “A method for constructing difference schemes”, Vestnik Tambovskogo Universiteta. Estestvennye i Tekhnicheskie Nauki, 18:5 (2013), 2656–2659 (in Russian)

[8] Rodionov V. I., “On exact solution of optimization problem generated by simplest transfer equation,”, Advanced Computer and Information Technologies, Abstracts of Int. Conf., Ural Federal University, Yekaterinburg, 2011, 132–135

[9] Riordan J., Combinatorial identities, John Wiley Sons, New York–London–Sydney, 1968, 270 pp. | MR | MR | Zbl

[10] Lai M. J., Schumaker L. L., Spline functions on triangulations, Cambridge University Press, Cambridge, 2007, 608 pp. | MR | Zbl

[11] Ahlberg J. H., Nilson E. N., Walsh J. L., The theory of splines and their applications, Academic Press, New York–London, 1967, 297 pp. | MR | MR | Zbl

[12] Mikhlin S. G., “Variational-net approximation”, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 48, 1974, 32–188 (in Russian) | MR | Zbl

[13] Stechkin S. B., Subbotin Yu. N., Splines in computing mathematics, Nauka, Moscow, 1976, 248 pp. | MR

[14] Zav'yalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Methods of spline functions, Nauka, Moscow, 1980, 352 pp. | MR

[15] Vasilenko V. A., Spline functions: theory, algorithms and programs, Nauka, Novosibirsk, 1983, 215 pp. | MR

[16] Burova I. G., Dem'yanovich Yu. K., Minimal splines and their applications, St. Petersburg State University, St. Petersburg, 2010, 364 pp.