The graph of reflexive-transitive relations and the graph of finite topologies
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 3-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma$, then $\sigma(x,y)=1$, otherwise $\sigma(x,y)=0$. In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). 
It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X$, then the number of connected components is equal to $\sum_{m=1}^nS(n,m)T_0(m-1)$, where $S(n,m)$ are Stirling numbers of second kind. (It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m)T_0(m)$.)
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
graph, reflexive-transitive relation, finite topology.
                    
                  
                
                
                @article{VUU_2015_25_1_a0,
     author = {Kh. Sh. Al' Dzhabri},
     title = {The graph of reflexive-transitive relations and the graph of finite topologies},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a0/}
}
                      
                      
                    TY - JOUR AU - Kh. Sh. Al' Dzhabri TI - The graph of reflexive-transitive relations and the graph of finite topologies JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 3 EP - 11 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a0/ LA - ru ID - VUU_2015_25_1_a0 ER -
%0 Journal Article %A Kh. Sh. Al' Dzhabri %T The graph of reflexive-transitive relations and the graph of finite topologies %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 3-11 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a0/ %G ru %F VUU_2015_25_1_a0
Kh. Sh. Al' Dzhabri. The graph of reflexive-transitive relations and the graph of finite topologies. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/VUU_2015_25_1_a0/
