Mots-clés : invariant sets
@article{VUU_2014_4_a8,
author = {L. I. Rodina},
title = {On the invariant sets of control systems with random coefficients},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {109--121},
year = {2014},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_4_a8/}
}
L. I. Rodina. On the invariant sets of control systems with random coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 109-121. http://geodesic.mathdoc.fr/item/VUU_2014_4_a8/
[1] Rodina L. I., “On some probability models of dynamics of population growth”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 109–124 | Zbl
[2] Rodina L. I., “About one stochastic model of population dynamics”, Population Dynamics: Analysis, Modelling, Forecast, 3:1 (2014), 1–15
[3] Rodina L. I., “Conditions of invariance and extinction for stochastic model of control population”, Population Dynamics: Analysis, Modelling, Forecast, 3:2 (2014), 43–54
[4] Nedorezov L. V., Course of lectures on mathematical ecology, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.
[5] Nedorezov L. V., Utyupin Yu. V., “A discrete-continuous model for a bisexual population dynamics”, Siberian Mathematical Journal, 44:3 (2003), 511–518 | DOI | MR | Zbl
[6] Bainov D. D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Applied Mathematics and Computation, 39:1 (1990), 37–48 | DOI | MR
[7] Dykhta V. A., Samsonyuk O. N., Optimal impulse control with applications, Fizmatlit, Moscow, 2000, 256 pp. | MR | Zbl
[8] Riznichenko G. Yu., Lectures on mathematical models in biology, Part 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.
[9] Kornfel'd I. P., Sinai Ya. G., Fomin S. V., The ergodic theory, Nauka, Moscow, 1980, 384 pp. | MR | Zbl
[10] Baranova O. V., “Uniform global controllability of a linear system with stationary random parameters”, Differential Equations, 27:11 (1991), 1289–1295 | MR | Zbl
[11] Masterkov Yu. V., Rodina L. I., “Sufficient conditions for the local controllability of systems with random parameters for an arbitrary number of system states”, Russian Mathematics, 52:3 (2008), 34–44 | DOI | MR | Zbl
[12] Rodina L. I., Khammadi A. Kh., “Statistical characteristics of attainability set of controllable systems with random coefficients”, Russian Mathematics, 58:11 (2014), 43–53 | DOI
[13] Shiryaev A. N., Probability, Nauka, Moscow, 1989, 580 pp. | MR
[14] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Handbook of probability theory and mathematical statistics, Nauka, Moscow, 1985, 640 pp. | MR | Zbl
[15] Feller W., An introduction to probability theory and its applications, Wiley, 1971 | MR | Zbl | Zbl
[16] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, no. 1, 2008, 194–212 | DOI | MR | Zbl
[17] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl