On the invariant sets of control systems with random coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 109-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to the investigation of invariant sets of control systems with impulse influences that are parameterized by a metric dynamic system. Such systems describe various stochastic models of population dynamics, economy, quantum electronics and mechanics. We obtain the conditions of existence of invariant sets for the attainability set of system as well as conditions of asymptotic approach of system solutions to a given set. The obtained results are illustrated by examples of population dynamics which is subject to crafts, when the moments of trade preparations and the sizes of these preparations are random variables. For given models we investigate various dynamic modes of development which essentially differ from modes of the deterministic models and better display the processes occurring in real ecological systems. Conditions under which the population size is in the given set and conditions of asymptotic extinction of population with probability equal to one are received; estimations for a mathematical expectation and a dispersion of time of population extinction are also obtained.
Keywords: сontrol systems with random coefficients, dynamical systems, probabilistic models of population dynamics.
Mots-clés : invariant sets
@article{VUU_2014_4_a8,
     author = {L. I. Rodina},
     title = {On the invariant sets of control systems with random coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {109--121},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_4_a8/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - On the invariant sets of control systems with random coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 109
EP  - 121
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_4_a8/
LA  - ru
ID  - VUU_2014_4_a8
ER  - 
%0 Journal Article
%A L. I. Rodina
%T On the invariant sets of control systems with random coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 109-121
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2014_4_a8/
%G ru
%F VUU_2014_4_a8
L. I. Rodina. On the invariant sets of control systems with random coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 109-121. http://geodesic.mathdoc.fr/item/VUU_2014_4_a8/

[1] Rodina L. I., “On some probability models of dynamics of population growth”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 109–124 | Zbl

[2] Rodina L. I., “About one stochastic model of population dynamics”, Population Dynamics: Analysis, Modelling, Forecast, 3:1 (2014), 1–15

[3] Rodina L. I., “Conditions of invariance and extinction for stochastic model of control population”, Population Dynamics: Analysis, Modelling, Forecast, 3:2 (2014), 43–54

[4] Nedorezov L. V., Course of lectures on mathematical ecology, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.

[5] Nedorezov L. V., Utyupin Yu. V., “A discrete-continuous model for a bisexual population dynamics”, Siberian Mathematical Journal, 44:3 (2003), 511–518 | DOI | MR | Zbl

[6] Bainov D. D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Applied Mathematics and Computation, 39:1 (1990), 37–48 | DOI | MR

[7] Dykhta V. A., Samsonyuk O. N., Optimal impulse control with applications, Fizmatlit, Moscow, 2000, 256 pp. | MR | Zbl

[8] Riznichenko G. Yu., Lectures on mathematical models in biology, Part 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.

[9] Kornfel'd I. P., Sinai Ya. G., Fomin S. V., The ergodic theory, Nauka, Moscow, 1980, 384 pp. | MR | Zbl

[10] Baranova O. V., “Uniform global controllability of a linear system with stationary random parameters”, Differential Equations, 27:11 (1991), 1289–1295 | MR | Zbl

[11] Masterkov Yu. V., Rodina L. I., “Sufficient conditions for the local controllability of systems with random parameters for an arbitrary number of system states”, Russian Mathematics, 52:3 (2008), 34–44 | DOI | MR | Zbl

[12] Rodina L. I., Khammadi A. Kh., “Statistical characteristics of attainability set of controllable systems with random coefficients”, Russian Mathematics, 58:11 (2014), 43–53 | DOI

[13] Shiryaev A. N., Probability, Nauka, Moscow, 1989, 580 pp. | MR

[14] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Handbook of probability theory and mathematical statistics, Nauka, Moscow, 1985, 640 pp. | MR | Zbl

[15] Feller W., An introduction to probability theory and its applications, Wiley, 1971 | MR | Zbl | Zbl

[16] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, no. 1, 2008, 194–212 | DOI | MR | Zbl

[17] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl