On the property of uniform complete controllability of a discrete-time linear control system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 53-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the property of uniform complete controllability (according to Kalman) for a discrete-time linear control system \begin{equation} x(t+1)=A(t)x(t)+B(t)u(t),\quad t\in\mathbb N_0,\quad (x,u)\in\mathbb R^n\times\mathbb R^m. \end{equation} We prove that if the system (1) is uniformly completely controllable, then the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$ (i.e. $\sup_{t\in\mathbb N_0}(|A(t)|+|A^{-1}(t)|)<+\infty$) and the matrix $B(\cdot)$ is bounded on $\mathbb N_0$. We prove that the system (1) is uniformly completely controllable if and only if there exists a $\vartheta\in\mathbb N$ such that for all $\tau\in\mathbb N_0$ the inequalities $\alpha_1I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1I$, $\alpha_2I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2I$ hold for some positive $\alpha_i$ and $\beta_i$, where \begin{gather*} W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1}X(t,s+1)B(s)B^*(s)X^*(t,s+1),\\ W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1}X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1). \end{gather*} On the basis of this statement, we prove the following criterion for uniform complete controllability of the system (1), which is similar to the Tonkov criterion of uniform complete controllability for continuous-time systems: the system (1) is $\vartheta$-uniformly completely controllable if and only if the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$; the matrix $B(\cdot)$ is bounded on $\mathbb N_0$; there exists an $\ell=\ell(\vartheta)>0$ such that for every $\tau\in\mathbb N_0$ and for any $x_1\in\mathbb R^n$ there exists a control function $u(t)$, $t\in[\tau,\tau+\vartheta)$, which transfers the solution of the system (1) from the state $x(\tau)=0$ to the state $x(\tau+\vartheta)=x_1$, and the inequality $|u(t)|\leqslant\ell|x_1|$ holds for all $t\in[\tau,\tau+\vartheta)$.
Keywords: linear control system, discrete time, uniform complete controllability.
@article{VUU_2014_4_a3,
     author = {V. A. Zaitsev and S. N. Popova and E. L. Tonkov},
     title = {On the property of uniform complete controllability of a discrete-time linear control system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {53--63},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_4_a3/}
}
TY  - JOUR
AU  - V. A. Zaitsev
AU  - S. N. Popova
AU  - E. L. Tonkov
TI  - On the property of uniform complete controllability of a discrete-time linear control system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 53
EP  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_4_a3/
LA  - ru
ID  - VUU_2014_4_a3
ER  - 
%0 Journal Article
%A V. A. Zaitsev
%A S. N. Popova
%A E. L. Tonkov
%T On the property of uniform complete controllability of a discrete-time linear control system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 53-63
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2014_4_a3/
%G ru
%F VUU_2014_4_a3
V. A. Zaitsev; S. N. Popova; E. L. Tonkov. On the property of uniform complete controllability of a discrete-time linear control system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 53-63. http://geodesic.mathdoc.fr/item/VUU_2014_4_a3/

[1] Gaishun I. V., Discrete-time systems, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 2001, 400 pp. | Zbl

[2] Kwakernaak H., Sivan R., Linear optimal control systems, Wiley–Interscience, New York–London–Sydney–Toronto, 1972 | MR | Zbl

[3] Kalman R. E., “Contributions to the theory of optimal control”, Boletin de la Sociedad Matematika Mexicana, 5:1 (1960), 102–119 | MR | Zbl

[4] Horn R., Johnson C., Matrix analysis, Cambridge University Press, Cambridge, 1988 | MR

[5] Lancaster P., Theory of matrices, Academic Press, New York–London, 1969 | MR | MR | Zbl

[6] Demidovich V. B., “On a criterion of stability for difference equations”, Differ. Uravn., 5:7 (1969), 1247–1255 (in Russian) | Zbl

[7] Tonkov E. L., “A criterion for uniform controllability and stabilization of a linear recurrent system”, Differ. Uravn., 15:10 (1979), 1804–1813 (in Russian) | MR | Zbl