Recurrent and almost recurrent multivalued maps and their selections. III
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 25-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(U,\rho)$ be a complete metric space and let $\mathcal R^p(\mathbb R,U),$ $p\geqslant~1$, and $\mathcal R(\mathbb R,U)$ be the spaces of (strongly) measurable functions $f\colon\mathbb R\to U$ for which the Bochner transforms $\mathbb R\ni t\mapsto f^B_l(t;\cdot)=f(t+\cdot)$ are recurrent functions with ranges in the metric spaces $L^p([-l,l],U)$ and $L^1([-l,l],(U,\rho'))$ where $l>0$, and $(U,\rho')$ is the complete metric space with the metric $\rho'(x,y)=\min\{1,\rho(x,y)\}$, $x,y\in U$. Analogously, we define the spaces $\mathcal R^p(\mathbb R,\mathrm{cl}_bU)$ and $\mathcal R(\mathbb R,\mathrm{cl}_bU)$ of functions (multivalued mappings) $F\colon\mathbb R\to\mathrm{cl}_bU$ with ranges in the complete metric space $(\mathrm{cl}_bU,\mathrm{dist})$ of nonempty closed bounded subsets of the metric space $(U,\rho)$ with the Hausdorff metric $\mathrm{dist}$ (while defining the multivalued mappings $F\in\mathcal R(\mathbb R,\mathrm{cl}_bU)$ the metric $\mathrm{dist}'(X,Y)=\min\{1,\mathrm{dist}(X,Y)\}$, $X,Y\in\mathrm{cl}_bU$, is also considered). We prove the existence of selectors $f\in\mathcal R(\mathbb R,U)$ (accordingly $f\in\mathcal R^p(\mathbb R,U)$) of multivalued maps $F\in\mathcal R(\mathbb R,\mathrm{cl}_bU)$ (accordingly $F\in\mathcal R^p(\mathbb R,\mathrm{cl}_bU)$) for which the sets of almost periods are subordinated to the sets of almost periods of multivalued maps $F$. For functions $g\in\mathcal R(\mathbb R,U),$ the conditions for the existence of selectors $f\in\mathcal R(\mathbb R,U)$ and $f\in\mathcal R^p(\mathbb R,U)$ such that $\rho(f(t),g(t))=\rho(g(t),F(t))$ for a.e. $t\in\mathbb R$ are obtained. On the assumption that the function $g$ and the multivalued map $F$ have relatively dense sets of common $\varepsilon$-almost periods for all $\varepsilon>0$, we also prove the existence of selectors $f\in\mathcal R(\mathbb R,U)$ such that $\rho(f(t),g(t))\leqslant\rho(g(t),F(t))+\eta(\rho(g(t),F(t)))$ for a.e. $t\in\mathbb R$, where $\eta\colon[0,+\infty)\to[0,+\infty)$ is an arbitrary nondecreasing function for which $\eta(0)=0$ and $\eta(\xi)>0$ for all $\xi>0$, and, moreover, $f\in\mathcal R^p(\mathbb R,U)$ if $F\in\mathcal R^p(\mathbb R,\mathrm{cl}_bU)$. To prove the results we use the uniform approximation of functions $f\in\mathcal R(\mathbb R,U)$ by elementary functions belonging to the space $\mathcal R(\mathbb R,U)$ which have the sets of almost periods subordinated to the sets of almost periods of the functions $f$.
Keywords: recurrent function, selector, multivalued map.
@article{VUU_2014_4_a2,
     author = {L. I. Danilov},
     title = {Recurrent and almost recurrent multivalued maps and their {selections.~III}},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {25--52},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_4_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Recurrent and almost recurrent multivalued maps and their selections. III
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 25
EP  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_4_a2/
LA  - ru
ID  - VUU_2014_4_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Recurrent and almost recurrent multivalued maps and their selections. III
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 25-52
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2014_4_a2/
%G ru
%F VUU_2014_4_a2
L. I. Danilov. Recurrent and almost recurrent multivalued maps and their selections. III. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 25-52. http://geodesic.mathdoc.fr/item/VUU_2014_4_a2/

[1] Danilov L. I., “Recurrent and almost recurrent multivalued maps and their selections”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 19–51 (in Russian) | Zbl

[2] Danilov L. I., “Recurrent and almost recurrent multivalued maps and their selections. II”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 3–21 (in Russian) | Zbl

[3] Danilov L. I., “The uniform approximation of recurrent functions and almost recurrent functions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 36–54 (in Russian) | Zbl

[4] Danilov L. I., “Almost periodic selections of multivalued mappings”, Izv. Otd. Mat. Inform. Udmurt. Gos. Univ., 1993, no. 1, 16–78 (in Russian) | Zbl

[5] Danilov L. I., “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316:1 (2006), 110–127 | DOI | MR | Zbl

[6] Danilov L. I., “On Besicovich almost periodic selections of multivalued maps”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2008, no. 1, 97–120 (in Russian)

[7] Danilov L. I., “On a class of Weyl almost periodic selections of multivalued maps”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 1, 34–55 (in Russian)

[8] Dolbilov A. M., Shneiberg I. Y., “Multivalued almost periodic mappings and selections of them”, Siberian Math. J., 32:2 (1991), 326–328 | DOI | MR | Zbl

[9] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[10] Danilov L. I., “On almost periodic sections of multivalued maps”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2008, no. 2, 34–41 (in Russian)

[11] Michael E., “Continuous selections. I”, Ann. Math., 63:2 (1956), 361–381 | DOI | MR

[12] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, RCD, Moscow–Izhevsk, 2004, 456 pp.

[13] Anosov D. V., Aranson S. Kh., Arnold V. I., Bronshtein I. U., Grines V. Z., Il'yashenko Yu. S., Ordinary differential equations and smooth dynamical systems, Springer-Verlag, Berlin–Heidelberg–New York, 1997 | MR | MR | Zbl

[14] Levitan B. M., Almost periodic functions, GITTL, Moscow, 1953, 396 pp. | MR

[15] Danilov L. I., “Measure-valued almost periodic functions and almost periodic selections of multivalued maps”, Sbornik: Mathematics, 188:10 (1997), 1417–1438 | DOI | DOI | MR | Zbl

[16] Danilov L. I., “On almost periodic multivalued maps”, Mathematical Notes, 68:1 (2000), 71–77 | DOI | MR | Zbl

[17] Danilov L. I., Uniform approximation of Stepanov almost periodic functions and almost periodic selections of multivalued maps, Deposited in VINITI 21.02.2003, no. 354-B2003, Physical Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2003, 70 pp. (in Russian)

[18] Danilov L. I., Ivanov A. G., “On a pointwise maximum theorem in the almost periodic case”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1994, no. 6, 50–59 (in Russian) | MR | Zbl

[19] Ivanov A. G., “Elements of the mathematical apparatus in the almost periodic optimization problems. I”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, no. 1(24), 3–100 (in Russian)

[20] Danilov L. I., “On the uniform approximation of a function that is almost periodic in the sense of Stepanov”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1998, no. 5, 10–18 (in Russian) | MR

[21] Krein M. G., Nudel'man A. A., The Markov moment problem and extremal problems. Ideas and problems of P. L. Chebyshev and A. A. Markov and their further development, Nauka, Moscow, 1973, 551 pp. | MR