Weak evasion of a group of rigidly coordinated evaders in the nonlinear problem of group pursuit
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A natural generalization of differential two-person games is conflict controlled processes with a group of controlled objects (from at least one of the conflicting sides). The problems of conflict interaction between two groups of controlled objects are the most difficult-to-research. The specificity of these problems requires new methods to study them. This paper deals with the nonlinear problem of pursuing a group of rigidly coordinated evaders (i.e. using the same control) by a group of pursuers under the condition that the maneuverability of evaders is higher. The goal of evaders is to ensure weak evasion for the whole group. By weak evasion we mean non-coincidence of geometrical coordinates, speeds, accelerations and so forth for the evader and all pursuers. The position control is constructed for all possible initial positions of the participants; this control guarantees a weak evasion for all evaders.
Keywords: weak evasion, group pursuit, nonlinear differential games, conflict controlled processes.
@article{VUU_2014_4_a0,
     author = {A. I. Blagodatskikh},
     title = {Weak evasion of a~group of rigidly coordinated evaders in the nonlinear problem of group pursuit},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--17},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_4_a0/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
TI  - Weak evasion of a group of rigidly coordinated evaders in the nonlinear problem of group pursuit
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 3
EP  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_4_a0/
LA  - ru
ID  - VUU_2014_4_a0
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%T Weak evasion of a group of rigidly coordinated evaders in the nonlinear problem of group pursuit
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 3-17
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2014_4_a0/
%G ru
%F VUU_2014_4_a0
A. I. Blagodatskikh. Weak evasion of a group of rigidly coordinated evaders in the nonlinear problem of group pursuit. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2014), pp. 3-17. http://geodesic.mathdoc.fr/item/VUU_2014_4_a0/

[1] Isaacs R., Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley and Sons, New York, 1965, 384 pp. | MR | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, Moscow, 1974, 456 pp. | MR | Zbl

[3] Petrosyan L. A., Differential games of pursuit, Leningrad State University, Leningrad, 1977, 222 pp. | MR | Zbl

[4] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, Moscow, 1990, 197 pp.

[5] Chikrii A. A., Conflict-controlled processes, Naukova Dumka, Kiev, 1992, 380 pp.

[6] Satimov N. Yu., Rikhsiev B. B., Methods of solving the evasion problem in mathematical control theory, Fan, Tashkent, 2000, 176 pp. | MR | Zbl

[7] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp. | MR | Zbl

[8] Petrov N. N., Petrov N. Nikandr, “On a differential game of ‘cossacks-robbers’ ”, Differ. Uravn., 19:8 (1983), 1366–1374 (in Russian) | MR | Zbl

[9] Blagodatskikh A. I., “Evasion of rigidly coordinated escaping objects from a group of inertial objects”, Journal of Computer and Systems Sciences International, 43:6 (2004), 966–972 | MR | Zbl

[10] Blagodatskikh A. I., “Weak evasion of a group of coordinated evaders”, Journal of Applied Mathematics and Mechanics, 69:6 (2005), 891–899 | DOI | MR | Zbl