@article{VUU_2014_3_a9,
author = {K. S. Kolegov},
title = {Comparison of quasisteady and nonsteady mathematical models of fluid flow in evaporating drop with due regard for the viscosity},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {110--122},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a9/}
}
TY - JOUR AU - K. S. Kolegov TI - Comparison of quasisteady and nonsteady mathematical models of fluid flow in evaporating drop with due regard for the viscosity JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 110 EP - 122 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2014_3_a9/ LA - ru ID - VUU_2014_3_a9 ER -
%0 Journal Article %A K. S. Kolegov %T Comparison of quasisteady and nonsteady mathematical models of fluid flow in evaporating drop with due regard for the viscosity %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 110-122 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2014_3_a9/ %G ru %F VUU_2014_3_a9
K. S. Kolegov. Comparison of quasisteady and nonsteady mathematical models of fluid flow in evaporating drop with due regard for the viscosity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 110-122. http://geodesic.mathdoc.fr/item/VUU_2014_3_a9/
[1] Deegan R. D., Bakajin O., Dupont T. F., Huber G., Nagel S. R., Witten T. A., “Contact line deposits in an evaporating drop”, Physical Review E, 62:1 (2000), 756–765 | DOI
[2] Yakhno T., “Salt-induced protein phase transitions in drying drops”, Journal of Colloid and Interface Science, 318:2 (2008), 225–230 | DOI
[3] Tarasevich Y. Y., Vodolazskaya I. V., Bondarenko O. P., “Modeling of spatial–temporal distribution of the components in the drying sessile droplet of biological fluid”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432 (2013), 99–103 | DOI
[4] Harris D. J., Hu H., Conrad J. C., Lewis J. A., “Patterning colloidal films via evaporative lithography”, Physical Review Letters, 98:14 (2007), 148301 | DOI
[5] Takhistov P., Chang H. C., “Complex stain morphologies”, Industrial Engineering Chemistry Research, 41:25 (2002), 6256–6269 | DOI
[6] Ragoonanan V., Aksan A., “Heterogeneity in desiccated solutions: implications for biostabilization”, Biophysical Journal, 94:6 (2008), 2212–2227 | DOI
[7] Layani M., Gruchko M., Milo O., Balberg I., Azulay D., Magdassi S., “Transparent conductive coatings by printing coffee ring arrays obtained at room temperature”, ACS Nano, 3:11 (2009), 3537–3542 | DOI
[8] Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfimov M. V., “Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment”, Nanotechnologies in Russia, 8:3–4 (2013), 137–162
[9] Larson R. G., “Transport and deposition patterns in drying sessile droplets”, AIChE Journal, 60:5 (2014), 1538–1571 | DOI
[10] Fischer B. J., “Particle convection in an evaporating colloidal droplet”, Langmuir, 18:1 (2002), 60–67 | DOI
[11] Kolegov K. S., Lobanov A. I., “Comparing of a quasisteady and nonsteady mathematical models of fluid flow in evaporating drop”, Computer Research and Modeling, 4:4 (2012), 811–825 (in Russian)
[12] Barash L. Yu., Bigioni T. P., Vinokur V. M., Shchur L. N., “Evaporation and fluid dynamics of a sessile drop of capillary size”, Physical Review E, 79:4 (2009), 046301 | DOI
[13] Bartashevich M. V., Marchuk I. V., Kabov O. A., “Numerical simulation of natural convection in a sessile liquid droplet”, Thermophysics and Aeromechanics, 19:2 (2012), 317–328
[14] Dunn G. J., Wilson S. K., Duffy B. R., David S., Sefiane K., “A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323:1–3 (2007), 50–55
[15] Hamamoto Y., Christy J. R. E., Sefiane K., “Order-of-magnitude increase in flow velocity driven by mass conservation during the evaporation of sessile drops”, Phys. Rev. E, 83 (2011), 051602 | DOI
[16] Cachile M., Benichou O., Cazabat A. M., “Evaporating droplets of completely wetting liquids”, Langmuir, 18:21 (2002), 7985–7990 | DOI
[17] Bhardwaj R., Attinger D., “Non-isothermal wetting during impact of millimeter-size water drop on a flat substrate: numerical investigation and comparison with high-speed visualization experiments”, International Journal of Heat and Fluid Flow, 29:5 (2008), 1422–1435 | DOI
[18] Rieger B., van den Doel L. R., van Vliet L. J., “Ring formation in nanoliter cups: quantitative measurements of flow in micromachined wells”, Physical Review E, 68:3 (2003), 036312 | DOI
[19] Hu H., Larson R. G., “Analysis of the microfluid flow in an evaporating sessile droplet”, Langmuir, 21:9 (2005), 3963–3971 | DOI
[20] Masoud H., Felske J. D., “Analytical solution for inviscid flow inside an evaporating sessile drop”, Physical Review E, 79:1 (2009), 016301 | DOI
[21] Saverchenko V. I., Fisenko S. P., Khodyko Yu. A., “Evaporation of a picoliter droplet on a wetted substrate at reduced pressure”, Journal of Engineering Physics and Thermophysics, 84:4 (2011), 723–729 | DOI
[22] Saverchenko V. I., Fisenko S. P., Khodyko J. A., “Low pressure evaporation of binary picoliter droplet on substrate”, 5-th International Symposium on Flow Visualization (June 25–28, 2012, Minsk, Belarus), 12–17
[23] Tarasevich Y. Y., Vodolazskaya I. V., Isakova O. P., Abdel Latif M. S., “Evaporation-induced flow inside circular wells: analytical results and simulations”, Microgravity Science and Technology, 21 (2009), 39–44 | DOI