Group pursuit in recurrent Pontryagin example
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 83-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A non-stationary differential game (a generalized example of L. S. Pontryagin) with $n$ pursuers and one evader is considered in the space $\mathbb R^k$ ($k\geqslant2$). All players have equal dynamic and inertial capabilities. The game is described by a system of the form \begin{gather*} Lz_i=z_i^{(l)}+a_1(t)z_i^{(l-1)}+\dots+a_l(t)z_i=u_i-v,\quad u_i,v\in V,\\ z_i^{(s)}(t_0)=z_{is}^0,\qquad i=1,2,\ldots,n,\quad s=0,1,\ldots,l-1. \end{gather*} The set $V$ of admissible player controls is strictly convex compact set with smooth boundary, $a_1(t),\dots,a_l(t)$ are continuous on $[t_0,\infty)$ functions, the terminal sets are the origin of coordinates. Pursuers use quasi-strategies. It is assumed that functions $\xi_i(t)$ being the solution of Cauchy problem $$ Lz_i=0,\quad z_i^{(s)}(t_0)=z_{is}^0, $$ are recurrent. Properties of recurrent functions are given. In terms of initial positions and game parameters the sufficient conditions of the pursuit problem solvability are obtained. The proof is carried out using the method of resolving functions. An example illustrating the obtained conditions is given.
Keywords: differential game, group pursuit, capture problem, Pontryagin's example, recurrent function.
@article{VUU_2014_3_a7,
     author = {N. A. Solov'eva},
     title = {Group pursuit in recurrent {Pontryagin} example},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {83--89},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a7/}
}
TY  - JOUR
AU  - N. A. Solov'eva
TI  - Group pursuit in recurrent Pontryagin example
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 83
EP  - 89
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_3_a7/
LA  - ru
ID  - VUU_2014_3_a7
ER  - 
%0 Journal Article
%A N. A. Solov'eva
%T Group pursuit in recurrent Pontryagin example
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 83-89
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2014_3_a7/
%G ru
%F VUU_2014_3_a7
N. A. Solov'eva. Group pursuit in recurrent Pontryagin example. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 83-89. http://geodesic.mathdoc.fr/item/VUU_2014_3_a7/

[1] Pontryagin L. S., Selected scientific works, v. 2, Nauka, Moscow, 1988, 575 pp.

[2] Chikrii A. A., Conflict controlled processes, Naukova Dumka, Kiev, 1992, 380 pp.

[3] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, Moscow, 1990, 197 pp.

[4] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp. | MR | Zbl

[5] Pshenichnyi B. N., “Simple pursuit by several objets”, Kibernetika, 1976, no. 3, 145–146 (in Russian)

[6] Grigorenko N. L., “The game of simple pursuit-evasion for groups of pursuers and one evader”, Moscow University Computational Mathematics and Cybernetics, 1983, no. 1, 41–47 (in Russian) | MR | Zbl

[7] Blagodatskikh A. I., “Simultaneous multiple capture in a simple pursuit problem”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 36–40 | DOI | MR | Zbl

[8] Petrov N. N., “To the non-stationary problem of the group pursuit with phase restrictions”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2:4 (2010), 74–83 (in Russian) | Zbl

[9] Petrov N. N., “Multiple capture in Pontryagin's problem with phase restrictions”, Journal of Applied Mathematics and Mechanics, 61:5 (1997), 725–732 | DOI | MR | Zbl

[10] Petrov N. N., “ ‘Soft’ capture in Pontryagin's example with many participants”, Journal of Applied Mathematics and Mechanics, 67:5 (2003), 671–680 | DOI | MR | Zbl

[11] Bannikov A. S., Petrov N. N., “On non-stationary problem of group pursuit with phase restrictions”, Proceedings of the Steklov Institute of Mathematics, 271, Suppl. 1, 2010, S41–S52 | DOI

[12] Blagodatskikh A. I., “Simultaneous multiple capture of evaders in a simple group pursuit problem”, Vestnik Udmurtskogo Universiteta. Matematika, 2007, no. 1, 17–24 (in Russian)

[13] Blagodatskikh A. I., “Almost periodic processes with conflict control with many participants”, Journal of Computer and Systems Sciences International, 46:2 (2007), 244–247 | DOI | MR | Zbl

[14] Blagodatskikh A. I., “Group pursuit in Pontryagin's nonstationary example”, Differential Equations, 44:1 (2008), 40–46 | DOI | MR | Zbl

[15] Zubov V. I., “The theory of recurrent functions”, Sib. Mat. Zh., 3:4 (1962), 532–560 (in Russian) | MR | Zbl