Evaluation of the stability of some inverse problems solutions for integro-differential equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 75-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates the stability of inverse problems solutions for two integro-differential hyperbolic equations. Theorems of existence and uniqueness of these solutions (in the small) have been obtained and published earlier by author. Thus only stability problems of these solutions are considered in this paper. In Theorem 1 we prove conditional stability of the solution of the following inverse problem: determine the kernel of the integral for integro-differential equation $$ u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\,d\tau,\qquad (x,t)\in\mathbb R\times\mathbb R_+, $$ with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta(x)$, and additional information about the direct problem solution $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t)$. The inverse problem is replaced by an equivalent system of integral equations for the unknown functions. To prove the theorem the method of successive approximations is used. Next, the method of estimating the integral equations and Gronwall's inequality are used. In a similar manner we prove Theorem 2. It is devoted to estimating the conditional stability of the solution of kernel determination problem for the same integro-differential equation in a bounded domain with respect to $x$, $x\in(0,l)$, with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta'(x)$, and boundary conditions $(u_x-hu)\big|_{x=0}=0$, $(u_x+Hu)\big|_{x=l}=0$, $t>0$. In this case the additional information about the direct problem solution is given as $u(0,t)=f(t)$, $t\geqslant0$. Here $h$ and $H$ are finite real numbers.
Keywords: integro-differential equation, inverse problem, stability, delta function
Mots-clés : kernel.
@article{VUU_2014_3_a6,
     author = {Zh. Sh. Safarov},
     title = {Evaluation of the stability of some inverse problems solutions for integro-differential equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {75--82},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/}
}
TY  - JOUR
AU  - Zh. Sh. Safarov
TI  - Evaluation of the stability of some inverse problems solutions for integro-differential equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 75
EP  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/
LA  - ru
ID  - VUU_2014_3_a6
ER  - 
%0 Journal Article
%A Zh. Sh. Safarov
%T Evaluation of the stability of some inverse problems solutions for integro-differential equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 75-82
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/
%G ru
%F VUU_2014_3_a6
Zh. Sh. Safarov. Evaluation of the stability of some inverse problems solutions for integro-differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 75-82. http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/

[1] Romanov V. G., Stability in inverse problems, Nauchnyi mir, Moscow, 2005, 295 pp. | MR

[2] Bukhgeym A. L., “Inverse problems of memory reconstrution”, Journal of Inverse and Ill-posed Problems, 1:3 (1993), 193–206 | MR

[3] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Mathematical Methods in the Applied Sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] Durdiev D. K., “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Differential Equations, 44:7 (2008), 893–899 | DOI | MR | Zbl

[5] Durdiev D. K., Safarov Zh. Sh., “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 37–47 (in Russian) | DOI

[6] Durdiev D. K., Totieva Zh. D., “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 (in Russian) | MR

[7] Safarov J. Sh., “Problems of the local solvability of the inverse problem for integro-differential equations vibrations of an infinite string”, Uzbek. Math. J., 2013, no. 2, 100–106

[8] Safarov J. Sh., “Inverse problem for integro-differential equations of hyperbolic type in the limited area”, Uzbek. Math. J., 2012, no. 2, 117–124