Mots-clés : kernel.
@article{VUU_2014_3_a6,
author = {Zh. Sh. Safarov},
title = {Evaluation of the stability of some inverse problems solutions for integro-differential equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {75--82},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/}
}
TY - JOUR AU - Zh. Sh. Safarov TI - Evaluation of the stability of some inverse problems solutions for integro-differential equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 75 EP - 82 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/ LA - ru ID - VUU_2014_3_a6 ER -
%0 Journal Article %A Zh. Sh. Safarov %T Evaluation of the stability of some inverse problems solutions for integro-differential equations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 75-82 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/ %G ru %F VUU_2014_3_a6
Zh. Sh. Safarov. Evaluation of the stability of some inverse problems solutions for integro-differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 75-82. http://geodesic.mathdoc.fr/item/VUU_2014_3_a6/
[1] Romanov V. G., Stability in inverse problems, Nauchnyi mir, Moscow, 2005, 295 pp. | MR
[2] Bukhgeym A. L., “Inverse problems of memory reconstrution”, Journal of Inverse and Ill-posed Problems, 1:3 (1993), 193–206 | MR
[3] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Mathematical Methods in the Applied Sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Durdiev D. K., “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Differential Equations, 44:7 (2008), 893–899 | DOI | MR | Zbl
[5] Durdiev D. K., Safarov Zh. Sh., “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 37–47 (in Russian) | DOI
[6] Durdiev D. K., Totieva Zh. D., “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 (in Russian) | MR
[7] Safarov J. Sh., “Problems of the local solvability of the inverse problem for integro-differential equations vibrations of an infinite string”, Uzbek. Math. J., 2013, no. 2, 100–106
[8] Safarov J. Sh., “Inverse problem for integro-differential equations of hyperbolic type in the limited area”, Uzbek. Math. J., 2012, no. 2, 117–124