Keywords: delay, grid schemes, stability
@article{VUU_2014_3_a5,
author = {V. G. Pimenov and S. V. Sviridov},
title = {Grid methods of solving advection equations with delay},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {59--74},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/}
}
TY - JOUR AU - V. G. Pimenov AU - S. V. Sviridov TI - Grid methods of solving advection equations with delay JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 59 EP - 74 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/ LA - ru ID - VUU_2014_3_a5 ER -
V. G. Pimenov; S. V. Sviridov. Grid methods of solving advection equations with delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 59-74. http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/
[1] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, New York, 1996, 438 pp. | MR
[2] Samarskii A. A., Theory of difference schemes, Nauka, Moscow, 1989, 656 pp. | MR
[3] Kalitkin N. N., Numerical methods, BHV-Petersburg, St. Petersburg, 2011, 586 pp.
[4] Petrov I. B., Lobanov A. I., Lectures on calculus mathematics, Binom, Moscow, 2006, 524 pp.
[5] Kamont Z., Czernous W., “Implicit difference methods for Hamilton–Jacobi functional differential equations”, Numerical Analysis and Applications, 2:1 (2009), 46–57 | DOI | Zbl
[6] Volkanin L. S., “Numerical solution of advection equations with delay”, Theory of control and mathematical modeling, Abstracts of All-Russian conference, Izhevsk Technical State University, Izhevsk, 2012, 12–13 (in Russian)
[7] Volkanin L. S., Pimenov V. G., “Grid schemes for the solution of the equation of advection with delay”, Actual problems of applied mathematics and mechanics, Abstracts of VI All-Russian conference dedicated to memory of the academician A. F. Sidorov, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Abrau-Durso, 2012, 22–23 (in Russian)
[8] Solodushkin S. I., “A difference scheme for the numerical solution of an advection equation with aftereffect”, Russian Mathematics, 57:10 (2013), 65–70 | DOI | Zbl
[9] Kim A. V., Pimenov V. G., $i$-smooth calculus and numerical methods for functional differential equations, Regular and Chaotic Dynamics, Moscow–Izhevsk, 2004, 256 pp.
[10] Pimenov V. G., “General linear methods for the numerical solution of functional-differential equations”, Differential Equations, 37:1 (2001), 116–127 | DOI | MR | Zbl
[11] Pimenov V. G., Lozhnikov A. B., “Difference schemes for the numerical solution of the heat conduction equation with aftereffect”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 1, 2011, 178–189 (in Russian) | Zbl