Grid methods of solving advection equations with delay
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 59-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a first-order partial differential equation with heredity effect $$ \frac{\partial u(x,t)}{\partial t}+a\frac{\partial u(x,t)}{\partial x}=f(x,t,u(x,t),u_t(x,\cdot)),\quad u_t(x,\cdot)=\{u(x,t+s),\ -\tau\leqslant s0\}. $$ For such an equation we construct grid methods using the principle of separation of finite-dimensional and infinite-dimensional state components. These grid methods are: analog of running schemes family, analog of Crank–Nicolson scheme, an approximation method to the middle of the square. The one-dimensional and double piecewise linear interpolation and the extrapolation by continuation are applied in order to account the effect of heredity. It is shown that the considered methods have orders of a local error: $O(h+\Delta)$, $O(h+\Delta^2)$ and $O(h^2+\Delta^2)$ respectively, where $h$ is the spatial discretization interval, $\Delta$ is the time discretization interval. Properties of double piecewise linear interpolation are investigated. Using the results of the general theory of differential schemes, stability conditions of the proposed methods are established. Including them in the general scheme of numerical methods for the functional-differential equations, theorems of orders of proposed algorithms convergence are received. Test examples comparing errors of methods are given.
Mots-clés : advection equation, interpolation, extrapolation, convergence order.
Keywords: delay, grid schemes, stability
@article{VUU_2014_3_a5,
     author = {V. G. Pimenov and S. V. Sviridov},
     title = {Grid methods of solving advection equations with delay},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {59--74},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - S. V. Sviridov
TI  - Grid methods of solving advection equations with delay
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 59
EP  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/
LA  - ru
ID  - VUU_2014_3_a5
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A S. V. Sviridov
%T Grid methods of solving advection equations with delay
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 59-74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/
%G ru
%F VUU_2014_3_a5
V. G. Pimenov; S. V. Sviridov. Grid methods of solving advection equations with delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 59-74. http://geodesic.mathdoc.fr/item/VUU_2014_3_a5/