Axiomatics of P. S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 28-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Novikov problem for a superintuitionistic logic $L$ is to describe the class of all maximal conservative (i.e. P. S. Novikov complete) extensions of $L$ in the language with additional logical connectives and logical constants. Since the family of all superintuitionistic logics has the power of the continuum, it is sensible to apply the P. S. Novikov problem to superintuitionistic logics which for one reason or other have already come to researchers' attention. In particular, there are three so-called pretabular superintuitionistic logics (i.e. non-tabular, but all their own extensions are tabular). One of them – the logic $L2$ – is characterized by the class of finite rooted linearly ordered sets of depth 2. It is established that for superintuitionistic logic $L2$ in the language with one additional constant there are exactly five P. S. Novikov complete extensions; their semantic description is given. In this paper we propose an explicit axiomatics for each of the five existing P. S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant.
Keywords: the superintuitionistic logic $L2$, a new logical constant, an explicit axiomatics of Novikov-complete extensions.
@article{VUU_2014_3_a2,
     author = {A. K. Koshcheeva},
     title = {Axiomatics of {P.} {S.~Novikov} complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {28--39},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a2/}
}
TY  - JOUR
AU  - A. K. Koshcheeva
TI  - Axiomatics of P. S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 28
EP  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_3_a2/
LA  - ru
ID  - VUU_2014_3_a2
ER  - 
%0 Journal Article
%A A. K. Koshcheeva
%T Axiomatics of P. S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 28-39
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2014_3_a2/
%G ru
%F VUU_2014_3_a2
A. K. Koshcheeva. Axiomatics of P. S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 28-39. http://geodesic.mathdoc.fr/item/VUU_2014_3_a2/

[1] Ershov Yu. L., Palyutin E. A., Mathematical logic, Nauka, Moscow, 1987, 336 pp. | MR | Zbl

[2] Skvortsov D. P., “On intuitionistic propositional calculus with an additional logical connective”, Studies in nonclassical logics and formal systems, Nauka, Moscow, 1983, 154–173 (in Russian) | MR | Zbl

[3] Smetanich Ya. S., “On statement calculi with an additional operation”, Soviet Math. Doklady, 2 (1961), 937–939 | Zbl

[4] Smetanich Ya. S., “On the completeness of the propositional calculus with additional operations in one argiment”, Tr. Mosk. Mat. Obs., 9, 1960, 357–371 (in Russian) | MR | Zbl

[5] Yankov V. A., “Constructing a sequence of strongly independent superintuitionistic propositional calculi”, Soviet Math. Dokl., 9 (1968), 806–807 | Zbl

[6] Yashin A. D., “On a new constant in intuitionistic propositional logic”, Fundam. Prikl. Mat., 5:3 (1999), 903–926 (in Russian) | MR | Zbl

[7] Yashin A. D., “New intuitionistic logical constants and Novikov completeness”, Stud. Log., 63:2 (1999), 151–180 | DOI | MR | Zbl

[8] Yashin A. D., “Classification of Novikov complete logics with extra logical constants”, Algebra and Logic, 42:3 (2003), 207–216 | MR | Zbl

[9] Yashin A. D., “A new regular constant in intuitionistic propositional logic”, Siberian Math. Journal, 37:6 (1996), 1242–1258 | DOI | MR | Zbl

[10] Maksimova L. L., “Pretabular superintuitionistic logics”, Algebra and Logic, 11:5 (1972), 308–314 | DOI | MR | Zbl

[11] Yashin A. D., “New constants in two pretabular superintuitionistic logics”, Algebra and Logic, 50:2 (2011), 171–186 | DOI | MR | Zbl

[12] Rasiowa H., Sikorski R., The mathematics of metamathematics, PWN, Warszawa, 1963 | MR | MR

[13] Zakharyaschev M. V., “Syntax and semantics of intermediate logics”, Algebra and Logic, 28:4 (1989), 262–282 | DOI | MR

[14] Chagrov A., Zakharyaschev M., Modal logic, Oxford University Press, Oxford, 1997, 605 pp. | MR | Zbl

[15] Grigoliya R. Sh., “Free S4.3-algebra with a finite number of generators”, Studies in nonclassical logics and formal systems, Nauka, Moscow, 1983, 281–287 (in Russian) | MR

[16] Lavrov I. A., Maksimova L. L., Tasks in set theory, mathematical logic and the theory of algorithms, Fizmatlit, Moscow, 2004, 256 pp. | MR

[17] Kleene S. C., Introduction to metamathematics, D. Van Nostrand Company, New York, 1952 | MR | MR

[18] Schutte K., “Complete systems of modal and intuitionistic logic”, Modal Logic, ed. R. Feys, Nauka, Moscow, 1974, 324–421 (in Russian)

[19] Gabbay D. M., “On some new intuitionistic propositional connectives. I”, Stud. Log., 36:1–2 (1977), 127–139 | DOI | MR | Zbl