Mathematical simulation of supersonic airflow around the rotary body
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 123-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two approaches to the problem of numerical simulation of streamlined bodies airflow are considered. These approaches are: numerical calculation of the Reynolds-averaged Navier–Stokes equations (RANS) using the turbulence model and direct numerical simulation (DNS). Testing of the considered approaches were conducted by solving the problem of flow past bodies of revolution with simple geometries: sphere and cone cylinder, for which values of drag coefficient at different Mach numbers are known. Qualitative and quantitative comparison of the results for the supersonic flow (modelled by RANS and DNS methods) around the bodies under consideration are carried out. The numerical simulation method is tested by considering the missile body (projectile) of characteristic shape. The numerical simulation results for the flow around the projectile are presented for a wide range of parameters: Mach numbers and angles of nutation. The calculated values of the drag coefficients are compared to the empirical reference dependencies according to the laws of 1943 and 1958.
Keywords: external flow, Reynolds-averaged Navier–Stokes, direct numerical simulation, computational hydrodynamics.
Mots-clés : drag coefficient
@article{VUU_2014_3_a10,
     author = {S. A. Korolev and S. A. Karskanov},
     title = {Mathematical simulation of supersonic airflow around the rotary body},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {123--133},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a10/}
}
TY  - JOUR
AU  - S. A. Korolev
AU  - S. A. Karskanov
TI  - Mathematical simulation of supersonic airflow around the rotary body
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 123
EP  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_3_a10/
LA  - ru
ID  - VUU_2014_3_a10
ER  - 
%0 Journal Article
%A S. A. Korolev
%A S. A. Karskanov
%T Mathematical simulation of supersonic airflow around the rotary body
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 123-133
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2014_3_a10/
%G ru
%F VUU_2014_3_a10
S. A. Korolev; S. A. Karskanov. Mathematical simulation of supersonic airflow around the rotary body. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 123-133. http://geodesic.mathdoc.fr/item/VUU_2014_3_a10/

[1] Kolomiitsev A. V., Lar'kov S. N., “Application of aerodynamic methods of designing for working out flying vehicle of the maximum density of configuration with set path characteristics”, Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 6:11 (2004), 49–55 (in Russian)

[2] Nielsen J. N., Missile aerodynamics, McGraw-Hill, New York, 1960

[3] Lipanov A. M., Karskanov S. A., “Application of high-order schemes for modeling the process of braking of supersonic flows in rectangular channels”, Computational Continuum Mechanics, 6:3 (2013), 292–299 (in Russian)

[4] Lipanov A. M., Theoretical mechanics of newtonian quality, Nauka, Moscow, 2011, 551 pp.

[5] Jiang G.-S., Shu C.-W., “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[6] Gottlieb S., Shu C.-W., “Total variation diminishing Runge–Kutta schemes”, Mathematics of computation, 67:221 (1998), 73–85 | DOI | MR | Zbl

[7] Frik P. G., Turbulence: Approaches and Models, Regular and Chaotic Dynamics, Moscow–Izhevsk, 2003, 292 pp.

[8] Launder B. E., Spalding D. B., “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 3 (1974), 269–289 | DOI | Zbl

[9] Chernyi G. G., Gas flow at hypersonic speeds, Fizmatgiz, Moscow, 1959, 220 pp.

[10] Konovalov A. A., Nikolaev Y. F., External ballistics, Central Research Institute of Information, Moscow, 1979, 228 pp.