Linear non-stationary differential pursuit games with several evaders
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear non-stationary differential pursuit game with a group of pursuers and a group of evaders is considered. The pursuers' goal is to catch all evaders and the evaders' goal is at least for one of them to avoid contact with pursuers. All players have equal dynamic capabilities, geometric constraints on the control are strictly convex compact set with smooth boundary. The point in question is the minimum number of evaders that is sufficient to evade a given number of pursuers from any initial position. Sufficient conditions for the solvability of the global problem of evasion are used as an upper estimate of this minimum. We assume that to capture one evader it suffices that the initial position of this evader lie in the interior of convex hull of initial positions of pursuers. Using this assumption we find a lower estimate of this minimum. The obtained two-sided estimate of the number of evaders sufficient to avoid contact with a given number of pursuers from any initial position is illustrated by examples.
Keywords: differential game, group pursuit, evader, pursuer.
@article{VUU_2014_3_a0,
     author = {A. S. Bannikov and N. N. Petrov},
     title = {Linear non-stationary differential pursuit games with several evaders},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--12},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_3_a0/}
}
TY  - JOUR
AU  - A. S. Bannikov
AU  - N. N. Petrov
TI  - Linear non-stationary differential pursuit games with several evaders
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 3
EP  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_3_a0/
LA  - ru
ID  - VUU_2014_3_a0
ER  - 
%0 Journal Article
%A A. S. Bannikov
%A N. N. Petrov
%T Linear non-stationary differential pursuit games with several evaders
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 3-12
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2014_3_a0/
%G ru
%F VUU_2014_3_a0
A. S. Bannikov; N. N. Petrov. Linear non-stationary differential pursuit games with several evaders. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/VUU_2014_3_a0/

[1] Isaacs R., Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley and Sons, New York, 1965, 384 pp. | MR | MR | Zbl

[2] Blaquiere A., Gerard F., Leitmann G., Quantitative and qualitative games, Academic Press, New York, 1969, 172 pp. | MR

[3] Krasovskii N. N., Game problems on the movements meeting, Nauka, Moscow, 1970, 420 pp. | MR | Zbl

[4] Friedman A., Differential games, John Wiley and Sons, New York, 1971, 350 pp. | MR | Zbl

[5] Krasovskii N. N., Subbotin A. I., Positional differential games, Fizmatlit, Moscow, 1974, 456 pp. | MR

[6] Hajek O., Pursuit games, Academic Press, New York, 1975, 266 pp. | MR | Zbl

[7] Leitmann G., Cooperative and noncooperative many-player differential games, Springer-Verlag, Vienna, 1974, 76 pp. | MR | Zbl

[8] Petrosyan L. A., Pursuit differential games, Leningrad State University, Leningrad, 1977, 222 pp. | MR | Zbl

[9] Chernous'ko F. L., Melikyan A. A., Control and search game problems, Nauka, Moscow, 1978, 272 pp. | MR | Zbl

[10] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, Moscow, 1981, 288 pp. | MR | Zbl

[11] Pontryagin L. S., “A linear differential evasion game”, Proceedings of the Steklov Institute of Mathematics, 112, 1971, 27–60 | MR | Zbl

[12] Chikrii A. A., Conflict-controlled processes, Kluwer Academic Publishers, Dordrecht, 1997, 404 pp. | MR | Zbl

[13] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, Moscow, 1990, 197 pp.

[14] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp. | MR | Zbl

[15] Satimov N. Yu., Rikhsiev B. B., Methods of solving the evasion problem in mathematical control theory, Fan, Tashkent, 2000, 176 pp. | MR | Zbl

[16] Petrov N. N., Petrov N. Nikandr., “On the differential game ‘Casacks-robbers’ ”, Differ. Uravn., 19:8 (1983), 1366–1374 (in Russian) | MR | Zbl

[17] Petrov N. N., “One estimate in the differential game with many players”, Vestnik Leningradskogo universiteta, 1985, no. 22, 107–109 (in Russian) | MR | Zbl

[18] Chikrii A. A., Prokopovich P. V., “About evasion problem in the interaction of groups of moving objects”, Kibernetika, 1989, no. 5, 59–63, 78 (in Russian) | MR

[19] Prokopovich P. V., Chikrii A. A., “A linear evasion problem for interacting groups of objects”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 583–591 | DOI | MR | Zbl

[20] Petrov N. N., “The soft capture of inertial objects”, Journal of Applied Mathematics and Mechanics, 75:3 (2011), 343–349 | DOI | MR | Zbl

[21] Bannikov A. S., “A nonstationary group pursuit problem”, Russian Mathematics, 53:5 (2009), 1–9 | DOI | MR | Zbl

[22] Pshenichnyi B. N., “Simple pursuit by several objects”, Kibernetika, 1976, no. 3, 145–146 (in Russian)

[23] Solovyova N. A., “One objective of group pursuit linear recurrent differential games”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 3:1 (2011), 81–90 (in Russian)

[24] Zubov V. I., Oscillation theory, Vysshaya shkola, Moscow, 1979, 399 pp.