Mots-clés : evolution of galaxies.
@article{VUU_2014_2_a8,
author = {L. P. Ossipkov},
title = {Irregular and regular forces in stellar systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {121--145},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a8/}
}
L. P. Ossipkov. Irregular and regular forces in stellar systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 121-145. http://geodesic.mathdoc.fr/item/VUU_2014_2_a8/
[1] Kurth R., Introduction to the mechanics of stellar systems, Pergamon Press, London–New York–Paris, 1957, X+174 pp. | MR | Zbl
[2] Orlov V. V., Rubinov A. V., $N$ body problem in stellar dynamics, Izd. VVM, Saint Petersburg, 2008, 175 pp.
[3] Jacobi C. G. J., Vorlesungen über Dynamik, Zweite Ausgabe, Verlag von G. Reiner, Berlin, 1884
[4] Wintner A., The analytical foundations of celestial mechanics, Princeton Univ. Press, Princeton, NJ, 1941 | MR
[5] Hilmy H. F., $N$ body problem in celestial mechanics and cosmogony, Izd. Akad. Nauk SSSR, M., 1951, 156 pp. | MR
[6] Zhabko A. P., Kirpichnikov S. N., Lectures on dynamical systems, v. 4, Ergodic theory, Saint Petersburg State University, Saint Petersburg, 2004, 128 pp.
[7] Pollard H., “The behavior of gravitational systems”, J. Math. Mech., 17:6 (1967), 601–608 | MR
[8] Saari D. G., “Expanding gravitational systems”, Trans. Amer. Math. Soc., 156 (1971), 219–240 | DOI | MR | Zbl
[9] Saari D. G., “On oscillatory motion in gravitational systems”, J. Diff. Equat., 14:2 (1973), 275–292 | DOI | MR | Zbl
[10] Bonnor W. B., “Jeans' formula for gravitational instability”, Monthly Notices Roy. Astron. Soc., 117:1 (1957), 104–116 | DOI | MR
[11] Poincaré H., “La Voie Lactée et la théorie de gaz”, Bull. Soc. Astron. France, 20 (1906), 153–165
[12] Eddington A. S., “The dynamics of globular stellar system”, Monthly Notices Roy. Astron. Soc., 74:1 (1913), 5–16 | DOI
[13] Schwarzschild K., “Stationäre Geschwindigkeitverteilung im Sternsystem”, Probleme der Astronomie, Verlag von Julius Springer, Berlin, 1924, 94–105 | DOI
[14] Gerasimovich B. P., “Statistical ensembles of stellar astronomy”, Mirovedeniye, 20:1 (1931), 41–54 (in Russian)
[15] Ogorodnikov K. F., “Some modern problems of stellar dynamics”, Vestn. Leningrad. Univ., 1947, no. 1, 5–16 (in Russian) | MR
[16] Agekyan T. A., “General features of the evolution of rotating systems of gravitating bodies”, Sov. Astronomy — AJ, 4:2 (1960), 298–307 | MR
[17] Genkin I. L., “Regular and irregular forces in star systems”, Trudy Astrofiz. Inst. Akad. Nauk Kazakh. SSR, 16 (1971), 103–110 (in Russian)
[18] Kandrup H. E., “The complexion of forces in an anisotropic self-gravitating system”, Astrophys. J., 244:3 (1981), 1039–1063 | DOI | MR
[19] Ossipkov L. P., “Principle problems of galactic dynamics”, Mathematical methods of modelling galaxies, SOLO, Saint Petersburg, 2012, 68–112
[20] Ossipkov L. P., “On some fundamental concepts of galactic dynamics”, Astron. Nachr., 334:8 (2013), 793–799
[21] Ahmad A., Cohen L., “Integration of the $N$ body gravitational problem by separation of the force into a near and far component”, Lecture Notes in Mathematics, 362, 1974, 304–312 | DOI
[22] Zonn W., Rudnicki K., Astronomia gwiazdowa, Panstwowe wydawnictwo naukowe, Warszawa, 1957
[23] Braun W., Hepp K., “The Vlasov equation and its fluctuations in the $1/N$ limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl
[24] Spohn H., “Kinetic equations from Hamiltonian dynamics: Markovian limit”, Rev. Math. Phys., 53:3 (1980), 589–615 | MR
[25] Chandrasekhar S., “New methods in stellar dynamics”, Ann. New York Acad. Sci., 45 (1943), 131–161 | DOI | MR
[26] Ogorodnikov K. F., “On principles of statistical mechanics of stellar systems”, Sov. Astron. — AJ, 1:6 (1957), 787–795 | MR
[27] Agekyan T. A., “Stellar statistics. Galaxy structure”, Course of astrophysics and stellar astronomy, v. 2, Fizmatgiz, M., 1962, 427–480
[28] Ossipkov L. P., General principles of mathematical modelling star systems, SOLO, Saint Petersburg, 2010, 102 pp.
[29] Vlasov A. A., Statistical distribution functions, Nauka, M., 1968, 356 pp. | MR
[30] Chavanis P.-H., “Hamiltonian and Brownian systems with large-range interactions. III: The BBGKY hierarchy for spatially inhomogeneous systems”, Physica A, 387 (2008), 787–805 | DOI | MR
[31] Camm G. L., “Random gravitational forces in a star field”, Monthly Notices Roy. Astron. Soc., 126:3 (1963), 283–293 | DOI
[32] Chandrasekhar S., von Neumann J., “The statistics of the gravitational field arising from a random distribution of stars. I: The speed of fluctuations”, Astrophys. J., 95:3 (1942), 489–531 | DOI | MR
[33] Ogorodnikov K. F., Dynamics of stellar systems, Pergamon Press, London, 1965, 359 pp. | Zbl
[34] Dibai E. A., Kaplan S. A., Dimensions and similarity of astrophysical quantities, Nauka, M., 1976, 400 pp.
[35] Chandrasekhar S., Elbert D., “Some elementary application of the virial theorem to stellar dynamics”, Monthly Notices Roy. Astron. Soc., 155:4 (1972), 435–447 | DOI
[36] Ossipkov L. P., “Gross-evolution of star clusters”, Star clusters and problems of stellar evolution, Ural State University, Sverdlovsk, 1983, 20–38
[37] Ossipkov L. P., “Small virial oscillations of axisymmetric gravitating systems, I”, Astrophysics, 43:2 (2000), 215–221 | DOI
[38] Antonov V. A., Nuritdinov S. N., “Nonlinear oscillations of some homogeneous models of star systems. I: The case of radial oscillations”, Vestnik Leningrad. Univ., 1973, no. 7, 131–138 (in Russian)
[39] Ossipkov L. P., “Dimensionless functionals for self-gravitating systems”, Dynamics, optimization, control, Problems of mechanics and control processes, 22, Saint Petersburg State University, Saint Petersburg, 2004, 127–130
[40] Von der Pahlen E., “Über die Enstehung der sphärischen Sternhaufen”, Zeitschr. f. Astrophys., 24:1/2 (1947), 68–120 | MR
[41] Kurth R., “Über Sternsystemezeitlich ober räumlich veranderlicher Dichte”, Zeitschr. f. Astrophys., 26:1 (1949), 100–136 | MR | Zbl
[42] Vandervoort P. O., “Modes of oscillations of a uniformly rotating homogeneous spheroid of stars”, Astrophys. J., 377:1 (1991), 49–71 | DOI
[43] Zaslavsky G. M., Physics of chaos in Hamiltonian systems, Imperial College Press, New York, 1998 | Zbl
[44] Mathur S. D., “Irreversibility due to mixing in collisionless systems”, Monthly Notices Roy. Astron. Soc., 231:2 (1988), 368–372 | DOI | MR
[45] Chernin A. D., Valtonen M. J., Zheng J.-Q., Ossipkov L. P., “Dynamical evolution of $N$-body gravitational systems starting from Poincaré chaos”, Stellar Dynamics: from classic to modern, Sobolev Astron. Inst., Saint Petersburg, 2001, 431–436
[46] Lynden-Bell D., “Statistical mechanics of violent relaxation in stellar systems”, Monthly Notices Roy. Astron. Soc., 136:1 (1967), 101–121 | DOI | MR
[47] Shu F. H., “On the statistical mechanics of violent relaxation”, Astrophys. J., 225:1 (1978), 83–94 | DOI
[48] Ziegler H. J., Wiechen H., “Collisionless relaxation of self-gravitating systems with spherically symmetric dynamics”, Astrophys. J., 362:2 (1990), 595–603 | DOI
[49] Hjorth J., Madsen J., “Violent relaxation and stability of elliptical galaxies”, Structure, dynamics and chemical evolution of elliptical galaxies, ESO, Garching, 1993, 263–272
[50] Arad I., Lynden-Bell D., “Inconsistency in theories of violent relaxation”, Monthly Notices Roy. Astron. Soc., 362:2 (2004), 385–395 | MR
[51] Kozlov V. V., Heat equilibrium according to Gibbs and Poincaré, Institute of Computer Science, M.–Izhevsk, 2002, 320 pp. | MR | Zbl
[52] Lynden-Bell D., “The stability and vibrations of a gas of stars”, Monthly Notices Roy. Astron. Soc., 124:4 (1962), 279–296 | DOI | MR | Zbl
[53] Genkin I. L., “Vlasov equation and irreversibility in plasma physics and stellar dynamics”, Sov. Physics-Astronomy, 13:6 (1970), 962–963
[54] Wehrl A., “General properties of entropy”, Rev. Modern Physics, 50:2 (1978), 221–260 | DOI | MR
[55] Grandy W. T., “Principle of maximum entropy and irreversible processes”, Physics Reports, 62:3 (1980), 175–266 | DOI | MR
[56] Vedenyapin V. V., On the uniqueness of Boltzmann's $H$ function, Preprint Inst. Applied Math. Acad. Sci. of the USSR, No 3, 1977, 77 pp.
[57] Tolman R., The principles of statistical mechanics, 2nd ed., Oxford Univ. Press, London, 1957, V+310 pp.
[58] Von Neumann I., Mathematische grundlagen der quantenmechanik, Verlag von Julius Springer, Berlin, 1932 | MR | Zbl
[59] Khinchine A. Ya., “Convex functions and evolutionary theorems of statistical mechanics”, Izvestiya Akad. Nauk SSSR, Ser. Mat., 7:3 (1943), 111–122 | Zbl
[60] Penrose O., Foundations of statistical mechanics. A deductive treatment, Pergamon Press, Oxford, 1970, VII+260 pp. | MR | Zbl
[61] Marimoto T., “Markov processes and the $H$-theorem”, J. Phys. Soc. Japan, 18:3 (1963), 328–331 | DOI | MR
[62] Ramshow J. D., “Irreversibility and general entropies”, Phys. Lett. A, 175:1 (1993), 170–171 | MR
[63] Antonov V. A., “Individual and statistical aspects of star motion”, Order and chaos in stellar and planetary systems, ASP Conf. Ser., 316, ASP, San Fransisco, 2004, 10–19
[64] Antonov V. A., Applying the variational method to stellar dynamics and some other problems, Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Leningrad, 1963, 5 pp.
[65] Antonov V. A., Nuritdinov S. N., Ossipkov L. P., “Classification of mixing kinds in dynamical systems”, Dynamics of galaxies and star clusters, Nauka, Alma-Ata, 1973, 55–59
[66] Antonov V. A., Nuritdinov S. N., Ossipkov L. P., “On the classification of phase mixing in collisionless stellar systems”, Astron. Astrophys. Transact., 7:2/3 (1995), 177–180 | DOI
[67] Tremaine S., Hénon M., Lynden-Bell D., “$H$-functions and mixing in violent relaxation”, Monthly Notices Roy. Astron. Soc., 219:2 (1986), 285–297 | DOI | Zbl
[68] Kandrup H. E., An $H$-theorem for violent relaxation?, Monthly Notices Roy. Astron. Soc., 225:4 (1987), 995–998 | DOI | MR | Zbl
[69] Sridhar S. D., Does $H$-function always increase during violent relaxation?, J. Astrophys. Astron., 8:1 (1987), 257–262 | DOI | MR
[70] Soker N., “$H$-function evolution in collisionless self-gravitating systems”, Publ. Astron. Soc. Pacific, 102:652 (1990), 639–645 | DOI
[71] Antonov V. A., “Stability of spherical clusters relative to finite amplitude perturbations”, Problems of celestial mechanics and stellar dynamics, Nauka, Alma-Ata, 1990, 66–70
[72] Chavanis P.-H., Sommeria J., Robert R., “Statistical mechanics of two-dimensional vortices and collisionless stellar systems”, Astrophys. J., 385:1 (1996), 385–399 | DOI
[73] Chavanis P.-H., Bouchet F., “On the coarse-grained evolution of collisionless stellar systems”, Astron. Astrophys., 430:1 (2005), 271–287
[74] Eddington A. S., “The dynamical evolution of stellar systems”, Astron. Nachr., 1921, Jubiläumsnummer, 9–10 | DOI
[75] Kuzmin G. G., “Effect of stellar encounters and evolution of star clusters”, Publ. Tartusk. Astron. Observ., 33:2 (1957), 75–102 (in Russian)
[76] Lebowitz J. L., Penrose O., “Modern ergodic theory”, Physics Today, 26:2 (1973), 23–29 | DOI | MR
[77] Wightman A. S., “Statistical mechanics and ergodic theory: an expository lecture”, Statistical mechanics at the turn of the decade, M. Dekker Inc., New York, 1971, 1–32
[78] Gibbs J. W., Elementary principles of statistical mechanics developed with a special reference to the rational foundation of thermodynamics, Yale Bicentennial Publ., Yale, 1902, XVII+436 pp. | MR
[79] Krylov N. S., Works on foundations of statistical physics, Princeton Univ. Press, Princeton, 1979, VI+160 pp. | MR | Zbl | Zbl
[80] Goldstein S., Lebowitz J. A., Aizenman M., “Ergodic properties of infinite systems”, Dynamical systems, theory and applications, Lecture Notes in Physics, 38, Springer, Berlin, 1975, 112–143 | DOI | MR
[81] Ossipkov L. P., “Phase mixing of the second kind in stellar systems, I”, Astrophysics, 8:1 (1972), 80–84 | DOI
[82] Ossipkov L. P., “On the physical interpretation of some kinds of mixing in stellar systems”, Sov. Astron. — AJ, 19:4 (1976), 530–532
[83] Nuritdinov S. N., “On phase mixing in nonlinear nonstationary stellar systems”, Astron. Tsirkulyar, 1979, no. 1081, 1–2 (in Russian)
[84] Kirbigekova I. I., “Non-linear, non-radial evolution of disk-like models of galaxies”, Astron. Astrophys. Transact., 7:4 (1995), 299–301 | DOI
[85] Mirtadjieva K. T., Kirbijekova I. I., Nuritdinov S. N., “Towards theory of compulsive phase mixing for non-stationary stellar systems”, Order and chaos in stellar and planetary systems, ASP Conf. Ser., 316, ASP, San Francisco, 2004, 363–365
[86] Sellwood J. A., Preto M., “Scattering of stars by transient spiral waves”, Disks of galaxies: kinematics, dynamics and perturbations, ASP Conf. Ser., 275, ASP, San Francisco, 2002, 94–105
[87] Nuritdinov S. N., “On the role of chaos and instability in the evolution of nonlinear nonstationary stellar systems”, Instability, chaos and predictability in Celestial Mechanics and Stellar Dynamics, Nova Sci. Publ., Commack, N.Y., 1993, 39–44
[88] Marochnik L. S., “On relaxation of stellar systems without star-star encounters”, Dokl. Akad. Nauk Tadjik. SSR, 10:8 (1967), 15–17 (in Russian)
[89] Marochnik L. S., “Relaxation of stars in plane subsystems of the Galaxy in the spiral structure”, Astrophysics, 5:3 (1969), 242–246 | DOI
[90] Tremaine S., Ostriker J. P., “Relaxation in stellar systems and the shape and rotation of the inner disk halo”, Monthly Notices Roy. Astron. Soc., 306:4 (1999), 662–668 | DOI | MR
[91] Pfenniger D., “Relaxation and dynamical friction in non-integrable stellar systems”, Astron. Astrophys., 165:1–2 (1986), 74–83 | Zbl
[92] Udry S., Pfenniger D., “Stochasticity in elliptical galaxies”, Astron. Astrophys., 198:1 (1988), 135–149 | MR | Zbl
[93] Oseledets V. I., “Multiplicative ergodic theorem. Lyapounov exponents for dynamical systems”, Trudy Moskovskogo Matematicheskogo Obshchestva, 19, 1968, 179–210 (in Russian) | Zbl
[94] Binney J., Lacey C., “The diffusion of stars through phase space”, Monthly Notices Roy. Astron. Soc., 230:4 (1988), 597–627 | DOI | Zbl
[95] Kandrup H. E., Wilmes D. E., “Collisional relaxation in non-integrable potential”, Astron. Astrophys., 283:1 (1994), 59–66
[96] Mahon M. E., Abernathy R. A., Bradley B. O., Kandrup H. E., “Transient ensemble dynamics in time-dependent galactic potential”, Monthly Notices Roy. Astron. Soc., 275:2 (1995), 443–453
[97] Habib S., Kandrup H. E., Mahon M. E., “Chaos and noise in galactic potential”, Astrophys. J., 480:1 (1997), 155–166 | DOI | MR
[98] Byl J., Ovenden M. W., “Time variations of the velocity distribution due to phase mixing”, Monthly Notices Roy. Astron. Soc., 164:3 (1973), 289–294 | DOI
[99] Ossipkov L. P., “Evolution of moving clusters in the regular field of the Galaxy”, Star aggregates, Ural State University, Sverdlovsk, 1980, 114–121
[100] Ivannikova E. I., Maksumov M. N., “On the possible criticality of a marginally stable stellar disk”, Stellar dynamics: from classic to modern, Sobolev Astron. Institute, Saint Petersburg, 2006, 367–373
[101] Serafin R. A., “On the rectilinear non-collision motion”, Cel. Mech. Dyn. Astron., 80 (2001), 97–108 | DOI
[102] Mikisha A. M., Tsitsin F. A., “On a formula for relaxation time”, Vestn. Moskovsk. Univ., Ser. III, Fizika, Astronomiya, 1965, no. 5, 74–77 (in Russian)
[103] Rastorguev A. S., Sementsov V. N., “Estimating the stochastization time in stellar systems”, Astronomy Letters, 32:1 (2006), 14–17 | DOI
[104] Ostriker J. P., Davidson A. F., “Time of relaxation. I: Unbounded medium”, Astrophys. J., 151:1 (1968), 679–686 | DOI
[105] Sivukhin D. V., “Coulomb collisions in fully ionized plasmas”, Voprosy Teorii Plazmy, 4 (1964), 81–187 (in Russian)
[106] Karayanidi A. D., “On the influence of external background on two-body encounters”, Trudy Astrofiz. Inst. Akad. Nauk Kazakh. SSR, 39 (1982), 30–37 (in Russian)
[107] Sagintaev B. S., Chumak O. V., “Some kinetic effects in non-homogeneous gravitating systems”, Trudy Astrofiz. Inst. Akad. Nauk Kazakh. SSR, 40 (1983), 12–20 (in Russian)
[108] Charlier C. V. L., “Statistical mechanics based on the law by Newton”, Lunds Univ. Årskraft, 13:5 (1917), 1–88
[109] Kandrup H. E., “Discreteness fluctuations and relaxation in stellar dynamical systems”, Monthly Notices Roy. Astron. Soc., 235:4 (1988), 1151–1167 | DOI | MR
[110] Weinberg M. D., “Nonlocal and collective relaxation in stellar systems”, Astrophys. J., 410:2 (1993), 543–551 | DOI
[111] Nelson R. W., Tremaine S., “Linear response, dynamical friction, and the fluctuation dissipation theorem in stellar dynamics”, Monthly Notices Roy. Astron. Soc., 306:1 (1999), 1–21 | DOI
[112] Kurth R., Dimensional analysis and group theory in astrophysics, Pergamon Press, Oxford, 1972 | MR
[113] Genkin I. L., “Relaxation in a regular field”, Sov. Phys. — Doklady, 16 (1971), 261–262
[114] Chandrasekhar S., “Stochastic problems in physics and astronomy”, Rev. Mod. Phys., 15:1 (1943), 1–89 | DOI | MR | Zbl
[115] Gurzadyan V. G., Kocharyan A. A., “Collective relaxation of stellar systems revisited”, Astron. Astrophys., 505:1 (2009), 203–205
[116] Sagintaev B. S., Chumak O. V., “Stochastic diffusion of an ensemble of circular orbits”, Trudy Astrofiz. Inst. Akad. Nauk Kazakh. SSR, 43 (1984), 51–58 (in Russian)
[117] Sagintaev B. S., “Evolution of an ensemble of orbits in an irregular field with a finite correlation time”, Trudy Astrofiz. Inst. Akad. Nauk Kazakh. SSR, 49 (1988), 106–116 (in Russian)
[118] Ossipkov L. P., “On the fundamental paradox of stellar dynamics”, Astron. Astrophys. Transact., 25:2–3 (2006), 123–128 | DOI
[119] Gurzadyan V. G., Savvidi G. K., “Collective relaxation in stellar systems”, Astron. Astrophys., 160:1 (1986), 203–210 | Zbl
[120] Kandrup H. E., “Divergence of nearby trajectories for the gravitational $N$-body problem”, Astrophys. J., 364:2 (1990), 420–425 | DOI | MR
[121] Boccaletti D., Pucacco G., Ruffini R., “Multiple relaxation time scales in stellar dynamics”, Astron. Astrophys., 214:1 (1991), 48–51
[122] Ossipkov L. P., “Stochastization in homogeneous graviplasmas”, Vestn. St-Peterbg. Univ., Ser. 10, Prikl. Mat. Inf. Prots. Upr., 2009, no. 2, 93–103 (in Russian)
[123] Cipriani P., Pucacco G., “Some critical remarks on relaxation in $N$-body simulation”, Nuovo Cimento, 109B:3 (1994), 325–330 | DOI
[124] Anosov D. V., “Geodesic flows on closed Riemannian manifolds of negative curvature”, Trudy Mat. Inst. Steklova, 40, 1967, 1–210 (in Russian)
[125] Pfenniger D., “Order and chaos in $N$-body systems”, $N$-body problem and gravitational dynamics, Observ. de Paris, Paris, 1993, 1–8
[126] Ekker G., Theory of fully ionized plasmas, Academic Press, New York–London, 1972
[127] Ovod D. V., “On relaxation in a regular field of star systems”, Control processes and stability, Proc. XLI Internat. sci. conference of postgraduate students and students, Saint Petersburg State University, Saint Petersburg, 2010, 199–203
[128] Ovod D. V., “On relaxation in stellar systems”, Astron. Tsirkulyar, 2012, no. 1571, 1–3
[129] Petrovskaya I. V., “The close–encounter force function”, Sov. Astron. Lett., 12:4 (1986), 237–240
[130] Agekyan T. A., “The probability of a stellar approach with a given change of the absolute velocity”, Sov. Astron. — AJ, 3:1 (1959), 46–58 | MR | MR
[131] Kandrup H. E., “Stochastic properties of the gravitational $N$-body problem”, Astron. Astrophys. Transact., 7:4 (1995), 225–228 | DOI
[132] Goodman J., Heggie D. C., Hut P., “On the exponential instability of the gravitational $N$-body system”, Astrophys. J., 415:2 (1993), 715–733 | DOI
[133] Ossipkov L. P., “Effective stochastization time for stellar systems with large number of stars”, Astron. Tsirkulyar, 2012, no. 1578, 1–3
[134] Ovod D. V., Ossipkov L. P., “Stochastization in gravitating systems”, Astron. Nachr., 334:8 (2013), 799–804