Mots-clés : vortex pair
@article{VUU_2014_2_a5,
author = {S. V. Sokolov},
title = {Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {86--99},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/}
}
TY - JOUR AU - S. V. Sokolov TI - Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 86 EP - 99 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/ LA - ru ID - VUU_2014_2_a5 ER -
%0 Journal Article %A S. V. Sokolov %T Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 86-99 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/ %G ru %F VUU_2014_2_a5
S. V. Sokolov. Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 86-99. http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/
[1] Borisov A. V., Mamaev I. S., Dynamics of the Solids. Hamiltonian methods, integrability, chaos, Institute of Computer Science, M.–Izhevsk, 2005, 576 pp. | MR
[2] Borisov A. V., Mamaev I. S., Mathematical methods in the dynamics of vortex structures, Institute of Computer Science, M.–Izhevsk, 2005, 368 pp. | MR
[3] Borisov A. V., Mamaev I. S., Sokolovskii M. A. (Ed.), Fundamental and applying problems in the vortex theory, Institute of Computer Science, M.–Izhevsk, 2003, 704 pp. | MR
[4] Kozlov V. V., “On a heavy cylindrical body falling in a fluid”, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1993, no. 4, 113–117 (in Russian)
[5] Manakov S. V., Shchur L. N., “Stochastic aspect of two-particle scattering”, JETP Lett., 37:1 (1983), 54–57
[6] Chaplygin S. A., “On the motion of heavy bodies in an incompressible fluid”, Complete Works, v. 1, Izd. Akad. Nauk SSSR, Leningrad, 1933, 133–150 (in Russian)
[7] Aref H., Stremler M. A., “Four-vortex motion with zero total circulation and impulse”, Physics of Fluids, 11:12 (1999), 3704–3715 | DOI | MR | Zbl
[8] Borisov A. V., Mamaev I. S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regular and Chaotic Dynamics, 8:2 (2003), 163–166 | DOI | MR | Zbl
[9] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118 | DOI | MR | Zbl
[10] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamics of a circular cylinder interacting with point vortices”, Discrete and Contin. Dyn. Syst. B, 5:1 (2005), 35–50 | MR | Zbl
[11] Föppl L., “Wirbelbewegung hinter einem Kreiszylinder”, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, 1913
[12] Fundamentals of the Vortex Theory, Institute of Computer Science, M.–Izhevsk, 2002 | DOI | Zbl
[13] Helmholtz H., “Über integrale hydrodinamischen gleichungen weiche den wirbelbewegungen entsprechen”, J. reine angew. Math., 55 (1858), 25–55 | DOI | Zbl
[14] Jones M. A., Shelly M. J., “Falling cards”, J. Fluid Mech., 540 (2005), 393–425 | DOI | MR | Zbl
[15] Kadtke J. B., Novikov E. A., “Chaotic capture of vortices by a moving body. I: The single point vortex case”, Chaos, 3:4 (1993), 543–553 | DOI | MR | Zbl
[16] Kirchhoff G. R., Vorlesungen über mathematische Physik, v. I, Teubner, Leipzig, 1876
[17] Michelin S., Smith S. G. L., “Falling cards and flapping flags: understanding fluid-solid interaction using an unsteady point vortex model”, Theor. Comput. Fluid Dyn., 24 (2010), 195–200 | DOI | Zbl
[18] Routh E. J., “Some application of conjugate function”, Proc. Lond. Math. Soc., 12:170/171 (1881), 73–89 | MR
[19] Shashikanth B. N., “Symmetric pairs of point vortices interacting with a neutrally buoyant two-dimentional circular cylinder”, Phys. of Fluids, 18 (2006), 127103 | DOI | Zbl
[20] Shashikanth B. N., Marsden J. E., Burdick J. W., Kelly S. D., “The Hamiltonian structure of a 2D rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. of Fluids, 14 (2002), 1214–1227 | DOI | MR | Zbl
[21] Sokolov S. V., “Falling motion of a circular cylinder interacting dynamically with $N$ point vortices”, Nonlinear Dynamics and Mobile Robotics, 2:1 (2014), 99–113
[22] Sokolov S. V., Ramodanov S. M., “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Regular and Chaotic Dynamics, 18:1–2 (2013), 184–193 | DOI | MR | Zbl
[23] Tophøj L., Aref H., “Chaotic scattering of two identical point vortex pairs revisited”, Phys. of Fluids, 20 (2008), 093605 | DOI | Zbl