Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 86-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system which consists of a circular cylinder subject to gravity interacting with $N$ vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Föppl type: a falling cylinder is accompanied with a vortex pair ($N=2$). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Föppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.
Keywords: point vortices, Hamiltonian systems, reduction.
Mots-clés : vortex pair
@article{VUU_2014_2_a5,
     author = {S. V. Sokolov},
     title = {Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {86--99},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/}
}
TY  - JOUR
AU  - S. V. Sokolov
TI  - Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 86
EP  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/
LA  - ru
ID  - VUU_2014_2_a5
ER  - 
%0 Journal Article
%A S. V. Sokolov
%T Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 86-99
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/
%G ru
%F VUU_2014_2_a5
S. V. Sokolov. Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 86-99. http://geodesic.mathdoc.fr/item/VUU_2014_2_a5/

[1] Borisov A. V., Mamaev I. S., Dynamics of the Solids. Hamiltonian methods, integrability, chaos, Institute of Computer Science, M.–Izhevsk, 2005, 576 pp. | MR

[2] Borisov A. V., Mamaev I. S., Mathematical methods in the dynamics of vortex structures, Institute of Computer Science, M.–Izhevsk, 2005, 368 pp. | MR

[3] Borisov A. V., Mamaev I. S., Sokolovskii M. A. (Ed.), Fundamental and applying problems in the vortex theory, Institute of Computer Science, M.–Izhevsk, 2003, 704 pp. | MR

[4] Kozlov V. V., “On a heavy cylindrical body falling in a fluid”, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1993, no. 4, 113–117 (in Russian)

[5] Manakov S. V., Shchur L. N., “Stochastic aspect of two-particle scattering”, JETP Lett., 37:1 (1983), 54–57

[6] Chaplygin S. A., “On the motion of heavy bodies in an incompressible fluid”, Complete Works, v. 1, Izd. Akad. Nauk SSSR, Leningrad, 1933, 133–150 (in Russian)

[7] Aref H., Stremler M. A., “Four-vortex motion with zero total circulation and impulse”, Physics of Fluids, 11:12 (1999), 3704–3715 | DOI | MR | Zbl

[8] Borisov A. V., Mamaev I. S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regular and Chaotic Dynamics, 8:2 (2003), 163–166 | DOI | MR | Zbl

[9] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118 | DOI | MR | Zbl

[10] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamics of a circular cylinder interacting with point vortices”, Discrete and Contin. Dyn. Syst. B, 5:1 (2005), 35–50 | MR | Zbl

[11] Föppl L., “Wirbelbewegung hinter einem Kreiszylinder”, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, 1913

[12] Fundamentals of the Vortex Theory, Institute of Computer Science, M.–Izhevsk, 2002 | DOI | Zbl

[13] Helmholtz H., “Über integrale hydrodinamischen gleichungen weiche den wirbelbewegungen entsprechen”, J. reine angew. Math., 55 (1858), 25–55 | DOI | Zbl

[14] Jones M. A., Shelly M. J., “Falling cards”, J. Fluid Mech., 540 (2005), 393–425 | DOI | MR | Zbl

[15] Kadtke J. B., Novikov E. A., “Chaotic capture of vortices by a moving body. I: The single point vortex case”, Chaos, 3:4 (1993), 543–553 | DOI | MR | Zbl

[16] Kirchhoff G. R., Vorlesungen über mathematische Physik, v. I, Teubner, Leipzig, 1876

[17] Michelin S., Smith S. G. L., “Falling cards and flapping flags: understanding fluid-solid interaction using an unsteady point vortex model”, Theor. Comput. Fluid Dyn., 24 (2010), 195–200 | DOI | Zbl

[18] Routh E. J., “Some application of conjugate function”, Proc. Lond. Math. Soc., 12:170/171 (1881), 73–89 | MR

[19] Shashikanth B. N., “Symmetric pairs of point vortices interacting with a neutrally buoyant two-dimentional circular cylinder”, Phys. of Fluids, 18 (2006), 127103 | DOI | Zbl

[20] Shashikanth B. N., Marsden J. E., Burdick J. W., Kelly S. D., “The Hamiltonian structure of a 2D rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. of Fluids, 14 (2002), 1214–1227 | DOI | MR | Zbl

[21] Sokolov S. V., “Falling motion of a circular cylinder interacting dynamically with $N$ point vortices”, Nonlinear Dynamics and Mobile Robotics, 2:1 (2014), 99–113

[22] Sokolov S. V., Ramodanov S. M., “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Regular and Chaotic Dynamics, 18:1–2 (2013), 184–193 | DOI | MR | Zbl

[23] Tophøj L., Aref H., “Chaotic scattering of two identical point vortex pairs revisited”, Phys. of Fluids, 20 (2008), 093605 | DOI | Zbl