@article{VUU_2014_2_a4,
author = {L. B. Ryashko and E. S. Slepukhina},
title = {Stochastic generation of high amplitude oscillations in two-dimensional {Hindmarsh{\textendash}Rose} model},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {76--85},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a4/}
}
TY - JOUR AU - L. B. Ryashko AU - E. S. Slepukhina TI - Stochastic generation of high amplitude oscillations in two-dimensional Hindmarsh–Rose model JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 76 EP - 85 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2014_2_a4/ LA - ru ID - VUU_2014_2_a4 ER -
%0 Journal Article %A L. B. Ryashko %A E. S. Slepukhina %T Stochastic generation of high amplitude oscillations in two-dimensional Hindmarsh–Rose model %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 76-85 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2014_2_a4/ %G ru %F VUU_2014_2_a4
L. B. Ryashko; E. S. Slepukhina. Stochastic generation of high amplitude oscillations in two-dimensional Hindmarsh–Rose model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 76-85. http://geodesic.mathdoc.fr/item/VUU_2014_2_a4/
[1] Hindmarsh J. L., Rose R. M., “A model of neuronal bursting using three coupled first order differential equations”, Proc. R. Soc. Lond. B. Biol. Sci., 221:1222 (1984), 87–102 | DOI
[2] Innocenti G., Morelli A., Genesio R., Torcini A., “Dynamical phases of the Hindmarsh–Rose neuronal model: Studies of the transition from bursting to spiking chaos”, Chaos, 17:4 (2007), 043128, 11 pp. | DOI | MR | Zbl
[3] Shilnikov A., Kolomiets M., “Methods of the qualitative theory for the Hindmarsh–Rose model: A case study — A Tutorial”, Int. J. Bifurcation Chaos, 18:8 (2008), 2141–2168 | DOI | MR | Zbl
[4] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1961, no. 1, 445–466 | DOI | MR
[5] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett., 78:5 (1997), 775–778 | DOI | MR | Zbl
[6] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI | MR
[7] Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Physics Reports, 392 (2004), 321–424 | DOI
[8] Bashkirtseva I., Ryashko L., “Analysis of excitability for the FitzHugh–Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109, 8 pp. | DOI | MR
[9] Bashkirtseva I. A., Ryashko L. B., Slepukhina E. S., “Splitting bifurcation of stochastic cycles in the FitzHugh–Nagumo model”, Rus. J. Nonlin. Dyn., 9:2 (2013), 295–307 (in Russian)
[10] Bashkirtseva I., Ryashko L., Slepukhina E., “Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model”, Fluctuation and Noise Letters, 13:1 (2014), 1450004, 16 pp. | DOI
[11] Gikhman I. I., Skorokhod A. V., Stochastic differential equations and its applications, Naukova dumka, Kiev, 1982, 612 pp. | MR
[12] Gardiner K. V., Stochastic methods in the natural sciences, Mir, M., 1986, 538 pp. | MR | Zbl
[13] Kurrer C., Schulten K., “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50:3 (1991), 311–320 | DOI | MR | Zbl
[14] Mil'shtein G. N., Ryashko L. B., “The first approximation of the quasipotential in problems of the stability of systems with random nonsingular perturbations”, Prikl. Mat. Mekh., 59:1 (1995), 53–63 (in Russian) | MR
[15] Ventsel' A. D., Freidlin M. I., Fluctuations in dynamical systems under the small random perturbations, Nauka, M., 1979, 424 pp. | MR | Zbl
[16] Dembo A., Zeitouni O., Large deviations techniques and applications, Johnes and Bartlett Publishers, Boston–London, 1995, 346 pp. | MR
[17] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in the study of local stability of limit cycles to random perturbations”, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 9:6 (2001), 104–113 (in Russian) | MR
[18] Bashkirtseva I., Ryashko L., “Sensitivity and chaos control for the forced nonlinear oscillations”, Chaos, Solitons and Fractals, 2005, no. 26, 1437–1451 | DOI | MR | Zbl
[19] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of 3D-cycles”, Mathematics and Computers in Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl
[20] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514, 4 pp. | DOI