@article{VUU_2014_2_a2,
author = {E. A. Kolpakova},
title = {Generalized solution for system of quasi-linear equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {43--55},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a2/}
}
E. A. Kolpakova. Generalized solution for system of quasi-linear equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 43-55. http://geodesic.mathdoc.fr/item/VUU_2014_2_a2/
[1] Evans L. C., Partial differential equations, American Mathematical Society, 1997, 662 pp. | MR
[2] Rozhdestvenskii B. L., Yanenko N. N., System of quasi-linear equations and their application to gas dynamics, Nauka, M., 1968, 687 pp. | MR
[3] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math., 18 (1965), 697–715 | DOI | MR | Zbl
[4] Danilov V. G., Shelkovich V. M., “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Quarterly of Applied Mathematics, 63:3 (2005), 401–427 | MR
[5] Dafermos C. M., Hyperbolic conservation law in continuum physics, Springer, 2005, 708 pp. | MR | Zbl
[6] Bressan A., Colombo R. M., “Unique solutions of $2\times 2$ conservation laws with large data”, Indiana U. Math. J., 44 (1995), 677–725 | DOI | MR | Zbl
[7] Subbotin A. I., Generalized solutions of first order PDE's. The dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR | Zbl
[8] Subbotina N., Kolpakova E., “On structure of the value function”, Proceedings of the 18th IFAC World Congress, Part I, v. 18, 2011, 8040–8045 | DOI
[9] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equations and applications to dynamical optimization”, Journal of Mathematical Sciences, 135:3 (2006), 2955–3091 | DOI | MR
[10] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[11] Oleinik O. A., “About the Cauchy problem for nonlinear equations in the class of discontinuous functions”, Doklady Akademii Nauk SSSR, 95:3 (1954), 451–454 (in Russian) | MR