On deterministic approach to solution of stochastic optimal control problem with controlled diffusion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 29-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an optimal control problem for a one-dimensional process driven by stochastic differential equation, which has both drift and diffusion coefficients controlled, diffusion being linear in control \begin{equation} dx(t) = b(t,x(t),u(t))\,dt + \sigma(t,x(t))u(t)\,dW(t), \quad x(0) = x_0, \nonumber \end{equation} where $x(t)$ is the state variable, $u(t)$ is the control variable and $W(t)$ is the Wiener process. We prove a theorem which gives a structure of solution for the considered differential equation as a superposition of functions $x(t) = \Phi(t,u(t)W(t) + y(t))$, where $\Phi(t,v)$ is the known function, which is completely determined by the diffusion coefficient $\sigma(t,x)$ and is independent of control, and $y(t)$ is the solution to the pathwise-deterministic measure-driven differential equation \begin{equation} dy(t) = B(t,y(t),u(t))\,dt - W(t)\,du(t). \nonumber \end{equation} The revealed structure of the solution enables us to consider a new pathwise-deterministic impulsive optimal control problem with the state variable $y(t)$ which is equivalent to the original stochastic optimal control problem. Pathwise problems may have anticipative solutions, so we propose a method that makes it possible to build nonanticipative optimal solutions. The basic idea of the method is to modify cost functional in new pathwise problem with special integral term, which guarantees nonanticipativity of solutions.
Keywords: stochastic optimal control, stochastic differential equations, deterministic approach, pathwise optimization, optimal impulsive control.
@article{VUU_2014_2_a1,
     author = {N. S. Ismagilov},
     title = {On deterministic approach to solution of stochastic optimal control problem with controlled diffusion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {29--42},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a1/}
}
TY  - JOUR
AU  - N. S. Ismagilov
TI  - On deterministic approach to solution of stochastic optimal control problem with controlled diffusion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 29
EP  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_2_a1/
LA  - ru
ID  - VUU_2014_2_a1
ER  - 
%0 Journal Article
%A N. S. Ismagilov
%T On deterministic approach to solution of stochastic optimal control problem with controlled diffusion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 29-42
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2014_2_a1/
%G ru
%F VUU_2014_2_a1
N. S. Ismagilov. On deterministic approach to solution of stochastic optimal control problem with controlled diffusion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 29-42. http://geodesic.mathdoc.fr/item/VUU_2014_2_a1/

[1] Wets R. J. B., “On the relation between stochastic and deterministic optimization”, Control Theory, Numerical Methods and Computer Systems Modelling, Lecture Notes in Economics and Mathematical Systems, 107, Springer-Verlag, Berlin, 1975, 350–361 | DOI | MR

[2] Rockafellar R. T., Wets R. J. B., “Nonanticipativity and $L^1$-martingales in stochastic optimization problems”, Mathematical Programming Study, 6 (1973), 170–187 | DOI | MR

[3] Davis M. H. A., “Anticipative LQG control”, IMA Journal of Mathematical Control and Information, 6:3 (1989), 259–265 | DOI | MR | Zbl

[4] Davis M. H. A., Burstein G., “A deterministic approach to stochastic optimal control, with application to anticipative control”, Stochastics and Stochastics Reports, 40:3–4 (1992), 203–256 | DOI | MR | Zbl

[5] Ismagilov N. S., Nasyrov F. S., “On deterministic approach to stochastic optimal control problem”, Vestnik UGATU, 17:5 (2013), 38–43 (in Russian)

[6] Nasyrov F. S., Local times, symmetric integrals and stochastic analysis, Fizmatlit, M., 2011, 212 pp.

[7] Miller B. M., Rubinovich E. Ya., Optimization of dynamic systems with pulse control, Nauka, M., 2005, 429 pp.

[8] Protter P. E., Stochastic integration and differential equations, Springer, Berlin, 2004, 415 pp. | MR | Zbl

[9] Dykhta V. A., Samsonyuk O. N., Optimal impulse control with applications, Fizmatlit, M., 2000, 256 pp. | MR | Zbl

[10] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “On constrained impulsive control problems”, Journal of Mathematical Sciences, 156:6 (2010), 654–688 | DOI | MR

[11] Arutyunov A. V., Karamzin D. Yu., Pereira F., “Pontryagin's maximum principle for constrained impulsive control problems”, Nonlinear Analysis, 75:3 (2012), 1045–1057 | DOI | MR | Zbl

[12] Øksendal B., Stochastic differential equations, Springer, Berlin–Heidelberg, 2003, 360 pp. | MR

[13] Mordukhovich B. S., Variational analysis and generalized differentiation, Springer, Berlin, 2006, 579 pp.