The question of the group of isometries of a Riemannian manifold is the main problem of the classical Riemannian geometry. Let $G$ denote the group of isometries of a Riemannian manifold $M$ of dimension $n$ with a Riemannian metric $g$. It is known that the group $G$ with the compact-open topology is a Lie group. This paper discusses the question of the existence of isometric maps of the foliated manifold $(M,F)$. We denote the group of all isometries of the foliated Riemannian manifold $(M,F)$ by $G_F$. Studying the structure of the group $G_F$ of the foliated manifold $(M,F)$ is a new and interesting problem. First, this problem is considered in the paper of A. Y. Narmanov and the author, where it was shown that the group $G_F$ with a compact-open topology is a topological group. We consider the question of the structure of the group $G_F$, where $M=R^n$ and $F$ is foliation generated by the connected components of the level surfaces of the smooth function $ f\colon R^n\to R$. It is proved that the group of isometries of foliated Euclidean space is a subgroup of the isometry group of Euclidean space, if the foliation is generated by the level surfaces of a smooth function, which is not a metric.
@article{VUU_2014_1_a9,
author = {A. S. Sharipov},
title = {On the group of isometries of foliated manifold},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {118--122},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a9/}
}
TY - JOUR
AU - A. S. Sharipov
TI - On the group of isometries of foliated manifold
JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY - 2014
SP - 118
EP - 122
IS - 1
UR - http://geodesic.mathdoc.fr/item/VUU_2014_1_a9/
LA - ru
ID - VUU_2014_1_a9
ER -
%0 Journal Article
%A A. S. Sharipov
%T On the group of isometries of foliated manifold
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 118-122
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2014_1_a9/
%G ru
%F VUU_2014_1_a9
A. S. Sharipov. On the group of isometries of foliated manifold. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 118-122. http://geodesic.mathdoc.fr/item/VUU_2014_1_a9/