@article{VUU_2014_1_a8,
author = {A. V. Chernov},
title = {On applicability of control parametrization technique to solving distributed optimization problems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {102--117},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a8/}
}
TY - JOUR AU - A. V. Chernov TI - On applicability of control parametrization technique to solving distributed optimization problems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 102 EP - 117 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2014_1_a8/ LA - ru ID - VUU_2014_1_a8 ER -
%0 Journal Article %A A. V. Chernov %T On applicability of control parametrization technique to solving distributed optimization problems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 102-117 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2014_1_a8/ %G ru %F VUU_2014_1_a8
A. V. Chernov. On applicability of control parametrization technique to solving distributed optimization problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 102-117. http://geodesic.mathdoc.fr/item/VUU_2014_1_a8/
[1] Volin Ju. M., Ostrovskii G. M., “A method of successive approximations for calculating optimal modes of some distributed-parameter systems”, Automation and Remote Control, 26:7 (1966), 1188–1194 | MR | Zbl
[2] Butkovskiy A. G., Distributed control systems, American Elsevier Publishing Company, Inc., New York, 1969, 446 pp. | MR | MR | Zbl
[3] Gornov A. Yu., “Numerical methods of investigation of optimal control problems in mechanic systems”, Mekhatronika, avtomatizatsiya, upravlenie, 2010, no. 8(113), 2–7 (in Russian)
[4] Teo K. L., Goh C. J., Wong K. H., A unified computational approach to optimal control problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific Technical, John Wiley Sons, Inc., Harlow–New York, 1991, ix+329 pp. | MR | Zbl
[5] Sadek I., Kucuk I., “A robust technique for solving optimal control of coupled Burger's equations”, IMA J. Math. Control Inf., 28:3 (2011), 239–250 | DOI | MR | Zbl
[6] Warga J., Optimal control of differential and functional equations, Academic Press, Inc., New York–London, 1972, xiii+531 pp. | MR | MR | Zbl
[7] Sumin V. I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, Soviet Math. Dokl., 39:2 (1989), 374–378 | MR | Zbl
[8] Sumin V. I., “The features of gradient methods for distributed optimal control problems”, USSR Comput. Math. Math. Phys., 30:1 (1990), 1–15 | DOI | MR | Zbl
[9] Afanas'ev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., A necessary condition in optimal control, Nauka, Moscow, 1990, 320 pp. | MR | Zbl
[10] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | Zbl
[11] Chernov A. V., “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Mathematics, 56:3 (2012), 55–65 | DOI | MR | Zbl
[12] Chernov A. V., “Sufficient conditions for the controllability of nonlinear distributed systems,”, Comput. Math. Math. Phys., 52:8 (2012), 1115–1127 | DOI | Zbl
[13] Chernov A. V., “On controllability of nonlinear distributed systems on a set of discretized controls”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 83–98 (in Russian)
[14] Chernov A. V., “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Comput. Math. Math. Phys., 53:12 (2013), 1839–1852 | DOI | DOI | MR
[15] Vainberg M. M., Variational method and method of monotone operators in the theory of nonlinear equations, John Wiley Sons, New York–Toronto, 1973, xi+356 pp. | MR | MR | Zbl
[16] Sumin V. I., Chernov A. V., “Operators in spaces of measurable functions: the Volterra property and quasinilpotency”, Differential Equations, 34:10 (1998), 1403–1411 | MR | Zbl
[17] Daletsky Y., Krein M. G., Stability of solutions of differential equations in Banach spaces, Ann. Math. Soc. Transl., 43, American Mathematical Society, Providence, R.I., 1974, 386 pp. | MR | MR
[18] Chernov A. V., “On the convergence of the conditional gradient method in distributed optimization problems”, Comput. Math. Math. Phys., 51:9 (2011), 1510–1523 | DOI | MR | Zbl