Some ultrafilter properties connected with extension constructions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 87-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General properties of ultrafilters of $\pi$-systems with zero and unit used under extension constructing for abstract attainability problems with the aim of estimation for attraction sets in topological space are considered. Possibilities of employment of the above-mentioned ultrafilters as general elements are considered. Among them, elements admissible with respect to constraints of asymptotic character of the initial problem are selected. Under very general conditions, the goal operator of the given problem extends to the continuous mapping that takes each ultrafilter of $\pi$-system to the limit of corresponding image. The basic attraction set (an asymptotic analog of the attainability domain) is estimated from below by the continuous image of an analogous auxiliary set in the space of ultrafilters. In the particular case of realization of the Stone space (when the used $\pi$-system is an algebra of sets) the above-mentioned estimate is an equality connecting a desired attraction set and an auxiliary one; for the latter a sufficiently simple representation is given. The variant of application (in estimating goals) of the Wallman extension is discussed.
Keywords: attraction set, topology, ultrafilter.
@article{VUU_2014_1_a7,
     author = {A. G. Chentsov},
     title = {Some ultrafilter properties connected with extension constructions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {87--101},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a7/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Some ultrafilter properties connected with extension constructions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 87
EP  - 101
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_1_a7/
LA  - ru
ID  - VUU_2014_1_a7
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Some ultrafilter properties connected with extension constructions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 87-101
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2014_1_a7/
%G ru
%F VUU_2014_1_a7
A. G. Chentsov. Some ultrafilter properties connected with extension constructions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 87-101. http://geodesic.mathdoc.fr/item/VUU_2014_1_a7/

[1] Warga J., Optimal control of differential and functional equations, Nauka, Moscow, 1977, 624 pp. | MR

[2] Duffin R. J., “Infinite programs”, Linear inequalities and related systems, Annals of Mathematics Studies, 38, Princeton Univ. Press, 1956, 157–170 | MR

[3] Gol'shtein E. G., Duality theory in mathematical programming and its applications, Nauka, Moscow, 1971, 352 pp. | MR

[4] Chentsov A. G., “Certain constructions of asymptotic analysis related to the Stone–Čech compactification”, Journal of Mathematical Sciences, 140:6 (2007), 873–904 | DOI | MR | MR | Zbl

[5] Chentsov A. G., “Finitely additive measures and extensions of abstract control problems”, Journal of Mathematical Sciences, 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[6] Krasovskii N. N., Theory of motion control, Nauka, Moscow, 1968, 475 pp. | MR

[7] Krasovskii N. N., Subbotin A. , Positional differential games, Nauka, Moscow, 1974, 456 pp. | MR | Zbl

[8] Bulinskii A. V., Shiryaev A. N., Theory of stochastic processes, Fizmatlit, Moscow, 2005, 402 pp.

[9] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 113–142 (in Russian)

[10] Chentsov A. G., “Ultrafilters in the constructions of attraction sets: Problem of compliance to constraints of asymptotic character”, Differential Equations, 47:7 (2011), 1059–1076 | DOI | MR | Zbl

[11] Chentsov A. G., “Attraction sets in abstract attainability problems: Equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | Zbl

[12] Chentsov A. G., “Tiered operators and conversion based on ultrafilters”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 18, no. 4, 2012, 298–314 (in Russian)

[13] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[14] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl

[15] Burbaki N., General topology. The basic structures, Nauka, Moscow, 1968, 272 pp. | MR

[16] Kelli J. L., General topology, Nauka, Moscow, 1981, 433 pp. | MR

[17] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions to abstract problems of attainability”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 1, 2011, 268–293 (in Russian)

[18] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $\mathbb N$”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 10–17 (in Russian)

[19] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 11–16 (in Russian)

[20] Chentsov A. G., “The transformation of ultrafilters and their application in constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 85–102 (in Russian)