“Layerwise” scattering for a difference Schrödinger operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 58-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrödinger operator with the potential which is the sum of $N$ functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann–Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For $N=2$ simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers. In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the $T$-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann–Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrödinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.
Keywords: difference Schrödinger operator, Lippmann–Schwinger equation
Mots-clés : reflection and transmission coefficients.
@article{VUU_2014_1_a4,
     author = {L. E. Morozova and Yu. P. Chuburin},
     title = {{\textquotedblleft}Layerwise{\textquotedblright} scattering for a~difference {Schr\"odinger} operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {58--65},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a4/}
}
TY  - JOUR
AU  - L. E. Morozova
AU  - Yu. P. Chuburin
TI  - “Layerwise” scattering for a difference Schrödinger operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 58
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_1_a4/
LA  - ru
ID  - VUU_2014_1_a4
ER  - 
%0 Journal Article
%A L. E. Morozova
%A Yu. P. Chuburin
%T “Layerwise” scattering for a difference Schrödinger operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 58-65
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2014_1_a4/
%G ru
%F VUU_2014_1_a4
L. E. Morozova; Yu. P. Chuburin. “Layerwise” scattering for a difference Schrödinger operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 58-65. http://geodesic.mathdoc.fr/item/VUU_2014_1_a4/

[1] Lousse V., Vigneron J. P., “Use of Fano resonances for bistable optical transfer through photonic crystal films”, Phys. Rev. B, 69 (2004), 155106, 11 pp. | DOI

[2] Broer W., Hoenders B. J., “Natural modes and resonances in a dispersive stratified $N$-layer medium”, J. Phys. A: Math. Theor., 42 (2009), 245207, 18 pp. | DOI | MR | Zbl

[3] Gain J., Sarkar M. D., Kundu S., Energy and effective mass dependence of electron tunnelling through multiple quantum barriers in different heterostructures, 2010, 8 pp., arXiv: 1002.1931

[4] Pendry J.\=., Low energy electron diffraction, Academic Press, London, 1974

[5] Datta S., Quantum transport: from the atom to the transistor, Regular and Chaotic Dynamics, Institute of Computer Science, Moscow–Izhevsk, 2009, 532 pp.

[6] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Mir, Moscow, 1977, 360 pp. | MR

[7] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A.: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl

[8] Fadeev L. D., Yakubovskii O. A., Lectures on quantum mechanics for students of mathematics, Leningrad State University, Leningrad, 1980, 200 pp.

[9] Reed M., Simon B., Methods of modern mathematical physics, v. III, Scattering theory, Mir, Moscow, 1982, 446 pp. | MR

[10] Reed M., Simon B., Methods of of modern mathematical physics, v. IV, Analysis of operators, Mir, Moscow, 1982, 428 pp. | MR

[11] Taylor J., Scattering theory: the quantum theory of non-relativistic collisions, Mir, Moscow, 1975, 567 pp.

[12] Tinyukova T. S., “The Lippmann–Schwinger equation for quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 99–104 (in Russian)