Mots-clés : perturbations.
@article{VUU_2014_1_a3,
author = {E. K. Makarov},
title = {Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {46--57},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/}
}
TY - JOUR AU - E. K. Makarov TI - Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 46 EP - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/ LA - ru ID - VUU_2014_1_a3 ER -
%0 Journal Article %A E. K. Makarov %T Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 46-57 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/ %G ru %F VUU_2014_1_a3
E. K. Makarov. Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 46-57. http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/
[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, Moscow, 1966, 576 pp. | MR | Zbl
[2] Izobov N. A., “Linear systems of ordinary differential equations”, Itogi Nauki i Tekhniki. Mat. Analiz, 12, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. Tekhn. Informatsii, Moscow, 1974, 71–146 (in Russian) | MR | Zbl
[3] Izobov N. A., Lyapunov exponents and stability, Cambridge scientific publishers, Cambridge, 2012, 352 pp.
[4] Millionshchikov V. M., “A proof of accessibility of the central exponents of linear systems”, Sibirsk. Mat. Zh., 10:1 (1969), 99–104 (in Russian)
[5] Sergeev I. N., “Sharp upper bounds of mobility of the Lyapunov exponents of a system of differential equations and the behavior of the exponents under perturbations approaching zero at infinity”, Differ. Uravn., 16:3 (1980), 438–448 (in Russian) | MR | Zbl
[6] Izobov N. A., “Exponential indices of a linear system and their calculation”, Dokl. Akad. Nauk BSSR, 26:1 (1982), 5–8 (in Russian) | MR
[7] Izobov N. A., “The highest exponent of a linear system with exponential perturbations”, Differ. Uravn., 5:7 (1969), 1186–1192 (in Russian) | MR | Zbl
[8] Barabanov E. A., “On the extreme Lyapunov exponents of linear systems with exponential and power perturbations”, Differ. Uravn., 20:2 (1984), 357 (in Russian)
[9] Barabanov E. A., The exact boundaries of the extreme Lyapunov exponents of linear differential systems with exponential and power perturbations, Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Minsk, 1984, 16 pp. (in Russian)
[10] Sergeev I. N., “Sharp bounds on mobility of the Lyapunov exponents of linear systems under small average perturbations”, Tr. Semin. Im. I. G. Petrovskogo, 11, 1986, 32–73 (in Russian) | MR | Zbl
[11] Barabanov E. A., Vishnevskaya O. G., “Sharp bounds for Lyapunov exponents of a linear differential system with perturbations integrally bounded on the half-line”, Dokl. Akad. Nauk Belarusi, 41:5 (1997), 29–34 (in Russian) | MR | Zbl
[12] Grobman D. M., “Characteristic exponents of systems near to linear ones”, Mat. Sbornik, 30(72):1 (1952), 121–166 (in Russian) | MR | Zbl
[13] Makarov E. K., Marchenko I. V., Semerikova N. V., “On an upper bound for the higher exponent of a linear differential system with integrable perturbations on the half-line”, Differential Equations, 41:2 (2005), 227–237 | DOI | MR | Zbl
[14] Marchenko I. V., “The sharp upper bound on the mobility of the highest exponent of a linear system under perturbations whose weighted mean is small”, Differential Equations, 41:10 (2005), 1493–1495 | DOI | MR | Zbl
[15] Makarov E. K., Marchenko I. V., “On an algorithm for constructing an attainable upper boundary for the higher exponent of perturbed systems”, Differential Equations, 41:12 (2005), 1694–1709 | DOI | MR | Zbl
[16] Kozhurenko N. V., Makarov E. K., “On sufficient conditions for the applicability of an algorithm for the computation of the sigma-exponent to integrally bounded perturbations”, Differential Equations, 43:2 (2007), 208–217 | DOI | MR | Zbl
[17] Makarov E. K., “On the limit classes of perturbations”, Erugin readings–2013, Abstracts of XV International Scientific Conference on Differential Equations, Part 1, Grodno State University, Minsk, 2013, 36–37 (in Russian)
[18] Makarov E. K., “On mappings of abstract linear systems”, Tr. Inst. Mat. Natl. Akad. Nauk Belarusi, 4, 2000, 102–108 (in Russian) | Zbl
[19] Lyapin E. S., Semi-groups, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, 592 pp. | MR