Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 46-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of problems in the Lyapunov exponent theory of linear differential systems $$ \dot x=A(t)x,\quad x\in\mathbb R^n ,\quad t\geqslant0, $$ can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems $$ \dot y=A(t)y+Q(t)y,\quad y\in\mathbb R^n,\quad t\geqslant0. $$ Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space $\mathrm{KC}_n(\mathbb R^+)$ of piecewise continuous and bounded on the positive semiaxis $n\times n$-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring $\mathrm{KC}_1(\mathbb R^+)$ (with the pointwise multiplication) containing at least one strictly positive function.
Keywords: linear systems, Lyapunov exponents
Mots-clés : perturbations.
@article{VUU_2014_1_a3,
     author = {E. K. Makarov},
     title = {Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {46--57},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/}
}
TY  - JOUR
AU  - E. K. Makarov
TI  - Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 46
EP  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/
LA  - ru
ID  - VUU_2014_1_a3
ER  - 
%0 Journal Article
%A E. K. Makarov
%T Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 46-57
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/
%G ru
%F VUU_2014_1_a3
E. K. Makarov. Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 46-57. http://geodesic.mathdoc.fr/item/VUU_2014_1_a3/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, Moscow, 1966, 576 pp. | MR | Zbl

[2] Izobov N. A., “Linear systems of ordinary differential equations”, Itogi Nauki i Tekhniki. Mat. Analiz, 12, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. Tekhn. Informatsii, Moscow, 1974, 71–146 (in Russian) | MR | Zbl

[3] Izobov N. A., Lyapunov exponents and stability, Cambridge scientific publishers, Cambridge, 2012, 352 pp.

[4] Millionshchikov V. M., “A proof of accessibility of the central exponents of linear systems”, Sibirsk. Mat. Zh., 10:1 (1969), 99–104 (in Russian)

[5] Sergeev I. N., “Sharp upper bounds of mobility of the Lyapunov exponents of a system of differential equations and the behavior of the exponents under perturbations approaching zero at infinity”, Differ. Uravn., 16:3 (1980), 438–448 (in Russian) | MR | Zbl

[6] Izobov N. A., “Exponential indices of a linear system and their calculation”, Dokl. Akad. Nauk BSSR, 26:1 (1982), 5–8 (in Russian) | MR

[7] Izobov N. A., “The highest exponent of a linear system with exponential perturbations”, Differ. Uravn., 5:7 (1969), 1186–1192 (in Russian) | MR | Zbl

[8] Barabanov E. A., “On the extreme Lyapunov exponents of linear systems with exponential and power perturbations”, Differ. Uravn., 20:2 (1984), 357 (in Russian)

[9] Barabanov E. A., The exact boundaries of the extreme Lyapunov exponents of linear differential systems with exponential and power perturbations, Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Minsk, 1984, 16 pp. (in Russian)

[10] Sergeev I. N., “Sharp bounds on mobility of the Lyapunov exponents of linear systems under small average perturbations”, Tr. Semin. Im. I. G. Petrovskogo, 11, 1986, 32–73 (in Russian) | MR | Zbl

[11] Barabanov E. A., Vishnevskaya O. G., “Sharp bounds for Lyapunov exponents of a linear differential system with perturbations integrally bounded on the half-line”, Dokl. Akad. Nauk Belarusi, 41:5 (1997), 29–34 (in Russian) | MR | Zbl

[12] Grobman D. M., “Characteristic exponents of systems near to linear ones”, Mat. Sbornik, 30(72):1 (1952), 121–166 (in Russian) | MR | Zbl

[13] Makarov E. K., Marchenko I. V., Semerikova N. V., “On an upper bound for the higher exponent of a linear differential system with integrable perturbations on the half-line”, Differential Equations, 41:2 (2005), 227–237 | DOI | MR | Zbl

[14] Marchenko I. V., “The sharp upper bound on the mobility of the highest exponent of a linear system under perturbations whose weighted mean is small”, Differential Equations, 41:10 (2005), 1493–1495 | DOI | MR | Zbl

[15] Makarov E. K., Marchenko I. V., “On an algorithm for constructing an attainable upper boundary for the higher exponent of perturbed systems”, Differential Equations, 41:12 (2005), 1694–1709 | DOI | MR | Zbl

[16] Kozhurenko N. V., Makarov E. K., “On sufficient conditions for the applicability of an algorithm for the computation of the sigma-exponent to integrally bounded perturbations”, Differential Equations, 43:2 (2007), 208–217 | DOI | MR | Zbl

[17] Makarov E. K., “On the limit classes of perturbations”, Erugin readings–2013, Abstracts of XV International Scientific Conference on Differential Equations, Part 1, Grodno State University, Minsk, 2013, 36–37 (in Russian)

[18] Makarov E. K., “On mappings of abstract linear systems”, Tr. Inst. Mat. Natl. Akad. Nauk Belarusi, 4, 2000, 102–108 (in Russian) | Zbl

[19] Lyapin E. S., Semi-groups, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, 592 pp. | MR