@article{VUU_2014_1_a2,
author = {N. P. Lazarev},
title = {The equilibrium problem for {a~Timoshenko} plate containing a~crack along a~thin rigid inclusion},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {32--45},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a2/}
}
TY - JOUR AU - N. P. Lazarev TI - The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2014 SP - 32 EP - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2014_1_a2/ LA - ru ID - VUU_2014_1_a2 ER -
%0 Journal Article %A N. P. Lazarev %T The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2014 %P 32-45 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2014_1_a2/ %G ru %F VUU_2014_1_a2
N. P. Lazarev. The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 32-45. http://geodesic.mathdoc.fr/item/VUU_2014_1_a2/
[1] Maiti M., “On the extension of a crack due to rigid inclusions”, International Journal of Fracture, 15 (1979), 389–393 | DOI
[2] Xiao Z. M., Chen B. J., “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, International Journal of Fracture, 108 (2001), 193–205 | DOI
[3] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[4] Khludnev A. M., Leugering G., “On the equilibrium of elastic bodies containing thin rigid inclusions”, Dokl. Phys., 55:1 (2010), 18–22 | DOI | MR | Zbl
[5] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, Journal Mechanics and Physics of Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[6] Rudoi E. M., “Griffith formula and Cherepanov–Rice's integral for a plate with a rigid inclusion and a crack”, Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 10:2 (2010), 98–117 (in Russian)
[7] Khludnev A. M., “Problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Mechanics of Solids, 45:5 (2010), 733–742 | DOI
[8] Khludnev A. M., Elasticity problems in nonsmooth domains, Fizmatlit, Moscow, 2010, 252 pp.
[9] Khludnev A. M., “On bending an elastic plate with a delaminated thin rigid inclusion”, Journal of Applied and Industrial Mathematics, 5:4 (2011), 582–594 | DOI | MR | Zbl
[10] Shcherbakov V. V., “On an optimal control problem of thin inclusions shapes in elastic bodies”, Sib. Zh. Ind. Mat., 16:1 (2013), 138–147 (in Russian)
[11] Neustroeva N. V., “A rigid inclusion in the contact problem for elastic plates”, Journal of Applied and Industrial Mathematics, 4:4 (2010), 526–538 | DOI | MR | Zbl
[12] Rotanova T. A., “Contact problem for plates with rigid inclusions intersecting the boundary”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3, 99–107 (in Russian)
[13] Vol'mir A. S., Nonlinear dynamics of plates and shells, Nauka, Moscow, 1972, 432 pp. | MR
[14] Pelekh B. L., The generalized theory of shells, L'vov University Press, L'vov, 1978, 159 pp. | MR | Zbl
[15] Fichera G., “Existence theorems in elasticity”, Handbuch der Physik, v. VIa/2, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 347–389
[16] Lazarev N. P., “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numerical Analysis and Applications, 4:4 (2011), 309–318 | DOI | MR | Zbl
[17] Baiocchi C., Capelo A., Variational and quasivariational inequalities. Applications to free boundary problems, John Wiley and Sons, New York, 1984, 452 pp. | MR | MR | Zbl
[18] Khludnev A. M., “The method of smooth domains in the equilibrium problem for a plate with a crack”, Siberian Mathematical Journal, 43:6 (2002), 1124–1134 | DOI | MR | Zbl