The spaces of regulated functions and differential equations with generalized functions in coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A function defined on an open (finite, semi-finite, infinite) interval is called regulated if it has finite one-sided limits at each point of its domain. In the present paper we study spaces of regulated functions, in particular, their dense subsets. Our motivation is applications to differential equations. Namely, we consider the Cauchy problem for a scalar linear differential equation with coefficients, which are derivatives of regulated functions. We immerse the Cauchy problem into the space of the Colombeau generalized functions. If the coefficients are derivatives of step functions, we find explicit solution $R(\varphi_\mu,t)$ of the Cauchy problem (in terms of representatives); its limit as $\mu\to+0$ is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator $\mathbf T$, which associates the solution to a Cauchy problem with this problem. Next, using a well-known topological result on a continuous extension, we extend the operator $\mathbf T$ to the operator $\widehat{\mathbf T}$ defined on the entire space of regulated functions. We have given the explicit representation of solution of the Cauchy problem for the inhomogeneous differential equation. Illustrative examples are also offered.
Keywords: regulated functions, generalized functions of Colombeau, differential equations.
Mots-clés : distributions
@article{VUU_2014_1_a0,
     author = {V. Ya. Derr and I. G. Kim},
     title = {The spaces of regulated functions and differential equations with generalized functions in coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--18},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2014_1_a0/}
}
TY  - JOUR
AU  - V. Ya. Derr
AU  - I. G. Kim
TI  - The spaces of regulated functions and differential equations with generalized functions in coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2014
SP  - 3
EP  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2014_1_a0/
LA  - ru
ID  - VUU_2014_1_a0
ER  - 
%0 Journal Article
%A V. Ya. Derr
%A I. G. Kim
%T The spaces of regulated functions and differential equations with generalized functions in coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 3-18
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2014_1_a0/
%G ru
%F VUU_2014_1_a0
V. Ya. Derr; I. G. Kim. The spaces of regulated functions and differential equations with generalized functions in coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2014), pp. 3-18. http://geodesic.mathdoc.fr/item/VUU_2014_1_a0/

[1] Derr V. Ya., Dizendorf K. I., “On the differential equations in $C$-generalized functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 11(414), 39–49 (in Russian) | MR | Zbl

[2] Kurzweil J., “Generalized ordinary differential equations”, Czechoslovak Mathematical Journal, 8:3 (1958), 360–388 | MR | Zbl

[3] Atkinson F. V., Discrete and continuous boundary problems, Mathematics in Science and Engineering, 8, Academic Press, New York–London, 1964, 570 pp. | MR | MR | Zbl | Zbl

[4] Levin A. Yu., “On the theory of ordinary differential equations. II”, Vestnik Yaroslavskogo Universiteta, 1974, no. 8, 122–144 (in Russian)

[5] Filippov A. F., Differential equations with discontinuous right hand sides, Springer-Verlag, New York, 1988, 304 pp. | MR

[6] Derr V. Ya., “To the definition of solution of a differential equation with generalized functions in coefficients”, Dokl. Akad. Nauk SSSR, 298:2 (1988), 269–272 (in Russian) | MR | Zbl

[7] Zavalischin S. T., Sesekin A. N., Impulse processes: models and applications, Nauka, Moscow, 1991, 256 pp. | MR

[8] Derr V. Ya., Kinzebulatov D. M., “Differential equations with distributions admitting multiplication on discontinuous functions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2005, no. 1, 35–58 (in Russian)

[9] Colombeau J. F., Elementary introduction to new generalized functions, North Holland Math. Studies, Amsterdam, 1985, 300 pp. | MR | Zbl

[10] Biagioni H. A., Colombeau J. F., “New generalized functions and $C^\infty$ functions with values in generalized complex numbers”, J. London Math. Soc., 2:33 (1986), 169–179 | DOI | MR

[11] Biagioni H. A., A nonlinear theory of generalized functions, Lecture notes in Mathematics, 1421, Springer-Verlag, New York, 1990, 214 pp. | DOI | MR | Zbl

[12] Grosser M., Kunziger M., Oberguggenberger M., Steinbauer R., Geometric theory of generalized functions with applications to general relativity, Mathematics and its Applications, 537, Kluwer academic publishers, Dordrecht, 2001, 505 pp. | MR | Zbl

[13] Bourbaki N., General Topology, Chapters 1–4, Springer-Verlag, New York, 1998, 437 pp. | MR | MR

[14] Dieudonne J., Foundations of Modern Analysis, Academic Press, New York, 2006, 408 pp. | MR

[15] Honig Ch. S., Volterra–Stieltjes integral equations, Mathematics Studies, 16, North-Holland Math. Studies, Amsterdam, 1975, 152 pp. | MR | Zbl

[16] Rodionov V. I., “On the space of the regular differentiable functions”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1(29), 3–32 (in Russian)

[17] Derr V. Ya., Kinzebulatov D. M., “The Alpha-integral of Stieltjes type”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2006, no. 1, 41–62 (in Russian)

[18] Derr V. Ya., Theory of functions of real argument, Lectures and exercises, Vyssh. Shkola, Moscow, 2008, 384 pp.

[19] Fedorov V. M., Theory of functions and functional analysis, Part II, Moscow State University, Moscow, 2000, 191 pp.

[20] Derr V. Ya., Functional analysis, Lectures and exercises, Knorus, Moscow, 2013, 462 pp.