Necessary and sufficient conditions of the subcriticality for linear control systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 100-108
Cet article a éte moissonné depuis la source Math-Net.Ru
A linear control system with continuous coefficients is considered. We obtain a sufficient condition of the subcriticality for such system. The necessary condition of the subcriticality for a linear time-invariant system is obtained. The link between subcritical linear systems and completely controllable linear systems is studied. It is proved that a linear system is completely controllable on closed interval if the system is subcritical at some point in the interior of this interval. It is proved that a completely controllable linear time-invariant system with one-dimensional control is subcritical.
Keywords:
linear control systems, subcritical systems, conditions of subcriticality.
@article{VUU_2013_4_a9,
author = {V. V. Lukyanov},
title = {Necessary and sufficient conditions of the subcriticality for linear control systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {100--108},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a9/}
}
TY - JOUR AU - V. V. Lukyanov TI - Necessary and sufficient conditions of the subcriticality for linear control systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 100 EP - 108 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2013_4_a9/ LA - ru ID - VUU_2013_4_a9 ER -
V. V. Lukyanov. Necessary and sufficient conditions of the subcriticality for linear control systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 100-108. http://geodesic.mathdoc.fr/item/VUU_2013_4_a9/
[1] Lukyanov V. V., “Two-dimensional T-systems of functions and their application for research of time optimal linear nonstationary control systems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 1, 101–130
[2] Nikolaev S. F., Tonkov E. L., “The structure of the controllability set of a linear subcritical system”, Differ. Uravn., 35:1 (1999), 107–115 | MR | Zbl
[3] Krasovskii N. N., Theory of motion control, Nauka, Moscow, 1968, 476 pp. | MR