Error of interpolation by sixth-degree polynomials on a~triangle
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 79-87
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers Birkhoff-type triangle-based interpolation to a two-variable function by sixth-degree polynomials. Similar estimates are automatically transferred to error estimates of related finite element method. The error estimates for the given elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that the estimates obtained are unimprovable. Unimprovability is understood in a following sense: there exists function from the given class and there exist absolute positive constants independent of triangulation such that estimates from below are valid for any nondegenerate triangle.
Mots-clés :
error of interpolation, triangulation
Keywords: piecewise polynomial function, finite element method.
Keywords: piecewise polynomial function, finite element method.
@article{VUU_2013_4_a7,
author = {N. V. Latypova},
title = {Error of interpolation by sixth-degree polynomials on a~triangle},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {79--87},
publisher = {mathdoc},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/}
}
TY - JOUR AU - N. V. Latypova TI - Error of interpolation by sixth-degree polynomials on a~triangle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 79 EP - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/ LA - ru ID - VUU_2013_4_a7 ER -
N. V. Latypova. Error of interpolation by sixth-degree polynomials on a~triangle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 79-87. http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/