Error of interpolation by sixth-degree polynomials on a triangle
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 79-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers Birkhoff-type triangle-based interpolation to a two-variable function by sixth-degree polynomials. Similar estimates are automatically transferred to error estimates of related finite element method. The error estimates for the given elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that the estimates obtained are unimprovable. Unimprovability is understood in a following sense: there exists function from the given class and there exist absolute positive constants independent of triangulation such that estimates from below are valid for any nondegenerate triangle.
Mots-clés : error of interpolation, triangulation
Keywords: piecewise polynomial function, finite element method.
@article{VUU_2013_4_a7,
     author = {N. V. Latypova},
     title = {Error of interpolation by sixth-degree polynomials on a~triangle},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {79--87},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/}
}
TY  - JOUR
AU  - N. V. Latypova
TI  - Error of interpolation by sixth-degree polynomials on a triangle
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 79
EP  - 87
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/
LA  - ru
ID  - VUU_2013_4_a7
ER  - 
%0 Journal Article
%A N. V. Latypova
%T Error of interpolation by sixth-degree polynomials on a triangle
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 79-87
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/
%G ru
%F VUU_2013_4_a7
N. V. Latypova. Error of interpolation by sixth-degree polynomials on a triangle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 79-87. http://geodesic.mathdoc.fr/item/VUU_2013_4_a7/

[1] Latypova N. V., “Error of interpolation by a piecewise parabolic polynomial on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 91–97

[2] Latypova N. V., “Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 3, 2011, 233–241

[3] Latypova N. V., “Independence of interpolation error estimates by fourth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 64–74

[4] Latypova N. V., “Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 53–64

[5] Berezin I. S., Zhidkov N. P., Computing Methods, v. 1, Fizmatgiz, Moscow, 1962, 464 pp. | MR