Stable periodic points for smooth diffeomorphisms of multidimensional space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 27-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We regard $C^r$-smooth ($r\geqslant1$) self-diffeomorphism of multidimensional space with a hyperbolic fixed point and non-transversal homoclinic point. In the works by Sh. Newhouse, L. P. Shil'nikov, B. F. Ivanov and other authors it is shown that under certain condition on the type of contact of stable and unstable manifolds, the neighborhoods of the homoclinic point may contain a countable set of stable periodic points, but at least one of their characterictic exponents tends to zero with the increase of a period. The goal of this work is to prove that under certain conditions imposed on the character of tangency between the stable and unstable manifolds, the neighborhood of the homoclinic point may contain an infinite set of stable periodic points whose characteristic exponents are negative and bounded away from zero.
Keywords: diffeomorphism of multidimentional space, homoclinic points, stable periodic points.
@article{VUU_2013_4_a3,
     author = {E. V. Vasil'eva},
     title = {Stable periodic points for smooth diffeomorphisms of multidimensional space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {27--35},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/}
}
TY  - JOUR
AU  - E. V. Vasil'eva
TI  - Stable periodic points for smooth diffeomorphisms of multidimensional space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 27
EP  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/
LA  - ru
ID  - VUU_2013_4_a3
ER  - 
%0 Journal Article
%A E. V. Vasil'eva
%T Stable periodic points for smooth diffeomorphisms of multidimensional space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 27-35
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/
%G ru
%F VUU_2013_4_a3
E. V. Vasil'eva. Stable periodic points for smooth diffeomorphisms of multidimensional space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 27-35. http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/

[1] Ivanov B. F., “Stability of the trajectories that do not leave the neighborhood of a homoclinic curve”, Differ. Uravn., 15:8 (1979), 1411–1414 | MR | Zbl

[2] Gonchenko S. V., Turaev D. V., Shil'nikov L. P., “Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincaré curve”, Russian Academy of Sciences. Doklady. Mathematics, 47:3 (1993), 410–415 | MR | Zbl

[3] Newhouse Sh., “Diffeomorphisms with infinitely many sinks”, Topology, 12 (1973), 9–18 | DOI | MR

[4] Vasil'eva E. V., “Stable nonperiodic points of two-dimensional $C^1$-diffeomorphisms”, Vestnik St. Petersburg University: Mathematics, 40:2 (2007), 107–113 | DOI | MR | Zbl

[5] Vasil'eva E. V., “Smooth diffeomorphisms of the plane with stable periodic points in a neighborhood of a homoclinic point”, Differential Equations, 48:10 (2012), 1335–1340 | DOI | MR | Zbl

[6] Pliss V. A., Integral sets of periodical systems of differential equations, Nauka, Moscow, 1977, 304 pp. | MR | Zbl

[7] Vasil'eva E. V., “Diffeomorphisms of multidimensional space with infinite set of stable periodic points”, Vestnik St. Petersburg University: Mathematics, 45:3 (2012), 115–124 | DOI | MR | MR | Zbl