@article{VUU_2013_4_a3,
author = {E. V. Vasil'eva},
title = {Stable periodic points for smooth diffeomorphisms of multidimensional space},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {27--35},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/}
}
TY - JOUR AU - E. V. Vasil'eva TI - Stable periodic points for smooth diffeomorphisms of multidimensional space JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 27 EP - 35 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/ LA - ru ID - VUU_2013_4_a3 ER -
E. V. Vasil'eva. Stable periodic points for smooth diffeomorphisms of multidimensional space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 27-35. http://geodesic.mathdoc.fr/item/VUU_2013_4_a3/
[1] Ivanov B. F., “Stability of the trajectories that do not leave the neighborhood of a homoclinic curve”, Differ. Uravn., 15:8 (1979), 1411–1414 | MR | Zbl
[2] Gonchenko S. V., Turaev D. V., Shil'nikov L. P., “Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincaré curve”, Russian Academy of Sciences. Doklady. Mathematics, 47:3 (1993), 410–415 | MR | Zbl
[3] Newhouse Sh., “Diffeomorphisms with infinitely many sinks”, Topology, 12 (1973), 9–18 | DOI | MR
[4] Vasil'eva E. V., “Stable nonperiodic points of two-dimensional $C^1$-diffeomorphisms”, Vestnik St. Petersburg University: Mathematics, 40:2 (2007), 107–113 | DOI | MR | Zbl
[5] Vasil'eva E. V., “Smooth diffeomorphisms of the plane with stable periodic points in a neighborhood of a homoclinic point”, Differential Equations, 48:10 (2012), 1335–1340 | DOI | MR | Zbl
[6] Pliss V. A., Integral sets of periodical systems of differential equations, Nauka, Moscow, 1977, 304 pp. | MR | Zbl
[7] Vasil'eva E. V., “Diffeomorphisms of multidimensional space with infinite set of stable periodic points”, Vestnik St. Petersburg University: Mathematics, 45:3 (2012), 115–124 | DOI | MR | MR | Zbl