Capture of a group of evaders in a conflict-controlled process
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 20-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper deals with the problem of pursuit of the group of $m$ evaders $(m\geqslant1)$ in a conflict-controlled process with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader ($m=1$) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous multiple capture of one evader requires that capture moments coincide. We say that the simultaneous multiple capture of the whole group of evaders $(m\geqslant2)$ holds if the simultaneous multiple capture of every evader holds at the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.
Keywords: capture, multiple capture, simultaneous multiple capture, pursuit, differential games, conflict-controlled processes.
Mots-clés : evasion
@article{VUU_2013_4_a2,
     author = {A. I. Blagodatskikh},
     title = {Capture of a~group of evaders in a~conflict-controlled process},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {20--26},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a2/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
TI  - Capture of a group of evaders in a conflict-controlled process
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 20
EP  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_4_a2/
LA  - ru
ID  - VUU_2013_4_a2
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%T Capture of a group of evaders in a conflict-controlled process
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 20-26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2013_4_a2/
%G ru
%F VUU_2013_4_a2
A. I. Blagodatskikh. Capture of a group of evaders in a conflict-controlled process. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 20-26. http://geodesic.mathdoc.fr/item/VUU_2013_4_a2/

[1] Pshenichnyi B. N., “Simple pursuit by several objects”, Kibernetika, 1976, no. 3, 145–146

[2] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, Moscow, 1990, 197 pp.

[3] Chikrii A. A., Conflict controlled processes, Naukova Dumka, Kiev, 1992, 380 pp.

[4] Petrov N. N., “Multiple capture in Pontryagin's problem with phase restrictions”, Prikl. Mat. Mekh., 61:5 (1997), 747–754 | MR | Zbl

[5] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp. | MR | Zbl

[6] Blagodatskikh A. I., “Simultaneous multiple capture in a simple pursuit problem”, Prikl. Mat. Mekh., 73:1 (2009), 54–59 | MR | Zbl

[7] Blagodatskikh A. I., “Simultaneous multiple capture in a conflict control process”, Prikl. Mat. Mekh., 77:3 (2013), 433–440 | Zbl

[8] Blagodatskikh A. I., “Simultaneous multiple capture of evaders in a simple group pursuit problem”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 13–18

[9] Bannikov A. S., “Nonstationary group pursuit problem”, Izv. Vyssh. Uchebn. Zaved., Mat., 2009, no. 5, 3–12 | MR | Zbl