@article{VUU_2013_4_a12,
author = {E. L. Tonkov},
title = {Turnpike processes of control systems on smooth manifolds},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {132--145},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a12/}
}
E. L. Tonkov. Turnpike processes of control systems on smooth manifolds. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 132-145. http://geodesic.mathdoc.fr/item/VUU_2013_4_a12/
[1] Panasyuk A. I., Panasyuk V. I., Asymptotic turnpike optimization of control systems, Nauka i Tekhnika, Minsk, 1986, 296 pp. | MR
[2] Anosov D. V., Lectures on linear algebra, Regular and Chaotic Dynamics, Moscow, 1999, 105 pp. | Zbl
[3] Engelking R., General topology, PWN, Warsaw, 1977 | MR | MR | Zbl
[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Modern geometry – methods and applications, URSS, Moscow, 1986, 759 pp. | MR
[5] Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Springer-Verlag, Berlin, 2004 | MR | Zbl
[6] Arnold V. I., Ordinary differential equations, Springer-Verlag, Berlin–Heidelberg–New York, 1992 | MR | MR
[7] Bebutov M. V., “Dynamical systems in the space of continuous function”, Bull. Mat. Inst. Moscow State University, 2:5 (1940), 1–52
[8] Panasenko E. A., Rodina L. I., Tonkov E. L., “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 275, suppl. 1, 2011, 121–136 | DOI
[9] Skvortsov V. A., “Borel set”, Mathematical encyclopedia, v. 1, Soviet Encyclopedia, Moscow, 1977, 535
[10] Filippov A. F., Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, Dordrecht, 1988 | MR | MR | Zbl