On some probability models of dynamics of population growth
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 109-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The new probability model is developed such that it is applied to the description of dynamics of growth for the isolated population. The conditions of asymptotical degeneration with probability one for the population which development is given by control system with random coefficients are found, and the conditions for the existence of the control leading population to degeneration are obtained, too. We study the dynamic mode of the development for the population which is on the verge of disappearance; it means that with probability one the size of such population will be less than the minimum critical value after which the biological restoration of the population is impossible. The results of the work are illustrated on an example of development of bisexual population.
Keywords: probability models of dynamics of population, probability of degeneration of the population, control systems with random coefficients.
@article{VUU_2013_4_a10,
     author = {L. I. Rodina},
     title = {On some probability models of dynamics of population growth},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {109--124},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - On some probability models of dynamics of population growth
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 109
EP  - 124
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/
LA  - ru
ID  - VUU_2013_4_a10
ER  - 
%0 Journal Article
%A L. I. Rodina
%T On some probability models of dynamics of population growth
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 109-124
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/
%G ru
%F VUU_2013_4_a10
L. I. Rodina. On some probability models of dynamics of population growth. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 109-124. http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/

[1] Nedorezov L. V., Course of lectures on mathematical ecology, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.

[2] Nedorezov L. V., Utyupin Yu. V., “A discrete-continuous model for a bisexual population dynamics”, Sibirskii Matematicheskii Zhurnal, 44:3 (2003), 650–659 | MR | Zbl

[3] Kaschenko S. A., “Stationary states of a delay differentional equation of insect population's dynamics”, Modelirovanie i Analiz Informatsionnykh Sistem, 19:5 (2012), 18–34

[4] Nagaev S. V., Nedorezov L. V., Vakhtel' V. I., “A probabilistic continuous-discrete model of the dynamics of the size of an isolated population”, Sibirskii Zhurnal Industrial'noi Matematiki, 2:2(4) (1999), 147–152 | MR | Zbl

[5] Kolmogorov A. N., “Qualitative study of mathematical models of population dynamics”, Problemy Kibernetiki, 25, Nauka, Moscow, 1972, 101–106 | MR

[6] Kornfel'd I. P., Sinai Ya. G., Fomin S. V., The ergodic theory, Nauka, Moscow, 1980, 384 pp. | MR | Zbl

[7] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164

[8] Shiryaev A. N., Probability, Nauka, Moscow, 1989, 580 pp. | MR

[9] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Handbook of probability theory and mathematical statistics, Nauka, Moscow, 1985, 640 pp. | MR | Zbl

[10] Feller W., An introduction to probability theory and its applications, Wiley, 1968 | MR | Zbl | Zbl

[11] Kuzenkov O. A., Ryabova E. A., Mathematical modeling of processes of selection, Nizhnii Novgorod State University, Nizhnii Novgorod, 2007, 324 pp.

[12] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, Moscow, 1967, 472 pp. | MR

[13] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl

[14] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, no. 1, 2008, 194–212 | DOI | MR | Zbl

[15] Blagodatskikh V. I., Filippov A. F., “Differential inclusions and optimal control”, Trudy Mat. Inst. Steklov, 169, 1985, 194–252 | MR | Zbl

[16] Rodina L. I., Tonkov E. L., “Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center”, Nelineinaya Dinamika, 5:2 (2009), 265–288