@article{VUU_2013_4_a10,
author = {L. I. Rodina},
title = {On some probability models of dynamics of population growth},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {109--124},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/}
}
L. I. Rodina. On some probability models of dynamics of population growth. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 109-124. http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/
[1] Nedorezov L. V., Course of lectures on mathematical ecology, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.
[2] Nedorezov L. V., Utyupin Yu. V., “A discrete-continuous model for a bisexual population dynamics”, Sibirskii Matematicheskii Zhurnal, 44:3 (2003), 650–659 | MR | Zbl
[3] Kaschenko S. A., “Stationary states of a delay differentional equation of insect population's dynamics”, Modelirovanie i Analiz Informatsionnykh Sistem, 19:5 (2012), 18–34
[4] Nagaev S. V., Nedorezov L. V., Vakhtel' V. I., “A probabilistic continuous-discrete model of the dynamics of the size of an isolated population”, Sibirskii Zhurnal Industrial'noi Matematiki, 2:2(4) (1999), 147–152 | MR | Zbl
[5] Kolmogorov A. N., “Qualitative study of mathematical models of population dynamics”, Problemy Kibernetiki, 25, Nauka, Moscow, 1972, 101–106 | MR
[6] Kornfel'd I. P., Sinai Ya. G., Fomin S. V., The ergodic theory, Nauka, Moscow, 1980, 384 pp. | MR | Zbl
[7] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164
[8] Shiryaev A. N., Probability, Nauka, Moscow, 1989, 580 pp. | MR
[9] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Handbook of probability theory and mathematical statistics, Nauka, Moscow, 1985, 640 pp. | MR | Zbl
[10] Feller W., An introduction to probability theory and its applications, Wiley, 1968 | MR | Zbl | Zbl
[11] Kuzenkov O. A., Ryabova E. A., Mathematical modeling of processes of selection, Nizhnii Novgorod State University, Nizhnii Novgorod, 2007, 324 pp.
[12] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, Moscow, 1967, 472 pp. | MR
[13] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl
[14] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, no. 1, 2008, 194–212 | DOI | MR | Zbl
[15] Blagodatskikh V. I., Filippov A. F., “Differential inclusions and optimal control”, Trudy Mat. Inst. Steklov, 169, 1985, 194–252 | MR | Zbl
[16] Rodina L. I., Tonkov E. L., “Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center”, Nelineinaya Dinamika, 5:2 (2009), 265–288