On some probability models of dynamics of population growth
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 109-124
Voir la notice de l'article provenant de la source Math-Net.Ru
The new probability model is developed such that it is applied to the description of dynamics of growth for the isolated population. The conditions of asymptotical degeneration with probability one for the population which development is given by control system with random coefficients are found, and the conditions for the existence of the control leading population to degeneration are obtained, too. We study the dynamic mode of the development for the population which is on the verge of disappearance; it means that with probability one the size of such population will be less than the minimum critical value after which the biological restoration of the population is impossible. The results of the work are illustrated on an example of development of bisexual population.
Keywords:
probability models of dynamics of population, probability of degeneration of the population, control systems with random coefficients.
@article{VUU_2013_4_a10,
author = {L. I. Rodina},
title = {On some probability models of dynamics of population growth},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {109--124},
publisher = {mathdoc},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/}
}
TY - JOUR AU - L. I. Rodina TI - On some probability models of dynamics of population growth JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 109 EP - 124 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/ LA - ru ID - VUU_2013_4_a10 ER -
L. I. Rodina. On some probability models of dynamics of population growth. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2013), pp. 109-124. http://geodesic.mathdoc.fr/item/VUU_2013_4_a10/